Study of Higgs Selfcouplings at ILC

J. Tian (Tsinghua U.)
Y. Takubo (Tohuko U.)
K. Fujii (KEK)
Y. Gao (Tsinghua U.)

status

- try to estimate the statistical fluctuation mainly of backgrounds
- try to use bc tagging to further suppress background such as tauvbbcs (dominant after b tagging)
- neural-net training for vvHH analysis

Significance I: $1 - p = \int_{-\infty}^{\mu\sigma} N(0, 1)$ \checkmark PDG recommended

II:
$$1 - p = \int_{-\mu\sigma}^{\mu\sigma} N(0, 1)$$

Energy (GeV)	Modes	signal	background	excess significance	
				def I	def II
500	$ZHH ightarrow (lar{l})(bar{b})(bar{b})$	4.7	2.3	2.4σ	2.6σ
500	$ZHH ightarrow (u ar{ u}) (b ar{b}) (b ar{b})$	3.7	1.6	2.1σ	2.4σ
500	$ZHH ightarrow (qar{q})(bar{b})(bar{b})$	26.4	153	2.1σ	2.4σ
500	combined			4.5σ	4.7σ

P value

excess: assuming there is no signal, the probability of no less than observed $p = \int_{S+B}^{+\infty} f(x, B, \sqrt{B}) dx$ events are backgrounds.

measure:assuming signal signal exists, the
probability of no greater thanp
p
background events are observed.

he

$$p = \int_{-\infty}^{B} f(x, S + B, \sqrt{S + B}) dx \quad \frac{1}{\sqrt{S}}$$
id.

Energy (GeV)	Modes	signal	background	significance	
				excess	measurement
500	$ZHH ightarrow (lar{l})(bar{b})(bar{b})$	4.7	2.3	2.4σ	1.7σ
500	$ZHH ightarrow (u ar{ u}) (b ar{b}) (b ar{b})$	3.7	1.6	2.1σ	1.5σ
500	$ZHH ightarrow (q\bar{q})(b\bar{b})(b\bar{b})$	26.4	153	2.1σ	2.0σ
500	combined			4.5σ	3.8σ

I. give the confidence how significantly we can observe the ZHH events

II. give the confidence how accurately we can measure the X-section or coupling

check of qqbbH backgrounds in qqHH analysis

backup