LHT status report on $e^+e^- \rightarrow e_{H}^+e_{H}^-$ @1TeV

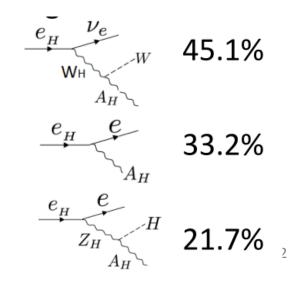
2010.12.17 optimization meeting Tohoku Univ. Eriko Kato

Previous report

Aim of this study:

Evaluate ILC's sensitivity on κ by measuring the mass of e_H .

 A_H

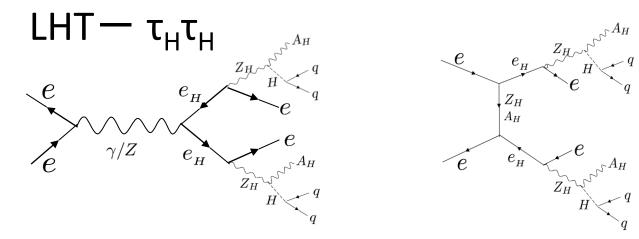

 e_{H}

Analysis mode

There are 3 ways e_H can decay.

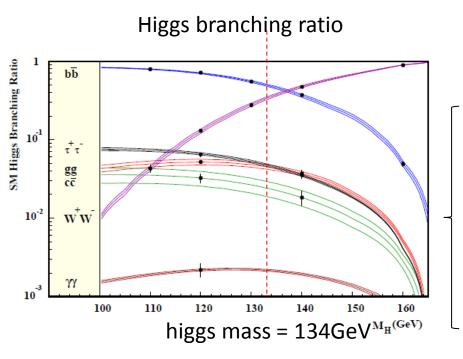
 $e_{\scriptscriptstyle H}$

Focus on $e_H e_H \rightarrow eZ_H eZ_H$

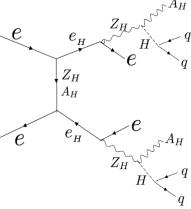


Todays topics

- Signal Electron selection
- Selection criteria
- Mass extraction of e_H


$e_{H}e_{H} \rightarrow eZ_{H}eZ_{H}$ analysis

- \blacksquare analysis on $eZ_H eZ_H$
 - -Cross section: 3.634 fb (pol. 0)
 - -2e + 2Higgs final state -> characteristic
- Background
 - top —tt, ttZ,ttH
 - WZ enWZ, eeWW, eeZZ,WWZ,ZZZ,WWZZ



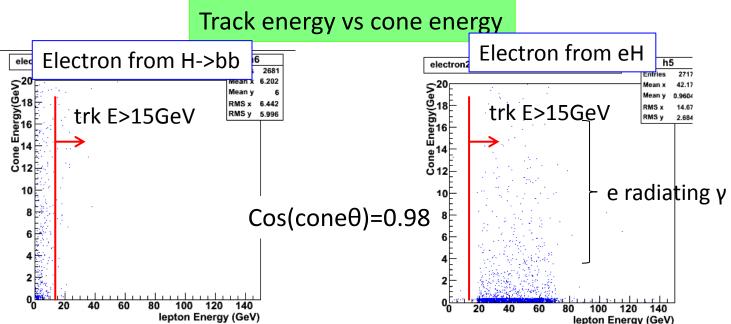
Signal Electron selection

- $e_{H}e_{H} \rightarrow eZ_{H}eZ_{H}$ analysis: 2e + 4jet
- save full hadronic & lose partial leptonic (electron emitting) events
- ⇒ optimize isolated electron selection

Pythia information Br(h \rightarrow bb) =42.35% Br(h \rightarrow WW)=39.57% Br(h \rightarrow ZZ) =5.50% Br(h \rightarrow TT)= 5.21% Br(h \rightarrow gg) =4.49% Br(h \rightarrow cc)= 2.31%

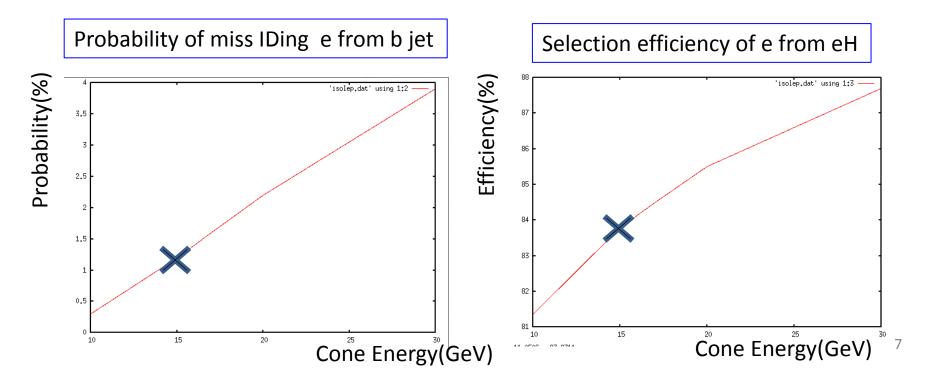
Leptonic decaying candidate

5


Isolated electron selection

- Signal : 2e(isolated electron from e_H) + 4 jet
- \Rightarrow optimize using HH \rightarrow bbbb (from eZ_HeZ_H)

Electron features:


- b-jets have large cone Energy
- some e from e_{H} have large cone Energy due to radiating γ

⇒optimize cone energy

Cone energy optimization

- Probability of missIDing e from b jet is small.(signal:H→bb)⇒Optimize with selection efficiency of e from e_H.
 - Select point right before slope becomes shallow.
- Cone Energy <15GeV ,P(missID)=1.2%,signal efficiency=84%</p>

Optimization using W_HW_H

 We optimized to maximize 2e + (2H→bb) selection
Next optimize to maximize 2e + (2H→WW) selection :hadronic decaying events

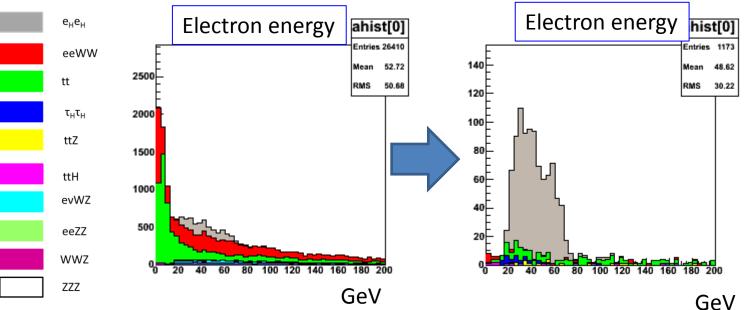
 \Rightarrow optimize using W_HW_H

(electron with hadronic decaying origin aren't highly dependent on W energy)

The probability of mistakenly selecting e from W hadronic decay instead of e from e_H is negligible(<0.02%)

Selection criteria

Selection criteria


isolated electron =2

m_H-50<H mass<m_H+30(GeV)

Miss Pt>50 (GeV)

Significance 24.5o

9

Mass extraction

- Background contribution small in signal region
- ⇒extract background preform mass fit.
- -eH mass=410 \pm 9.0 GeV
- Fitting improvement is needed.

plan

- Improve fitting for mass extraction.
- **Derive parameter** κ from e_H mass.
- Consider finding e_H mass by reconstructing e_H .