Progress in ILD Tracking SW for the DBD

Steve Aplin and Frank Gaede

ILD-SW Meeting 2nd February 2011

ILD Tracking software

- standalone tracking in TPC
- LEP code (f77)
- standalone patrec in
 VXD/SIT/FTD in Marlin (C++)
- merging of Track segments
 and refit w/ f77 Kalman fitter
- current tracking used for LOI process
 - required p_t resolution reached
 - also in presence of backgrounds (even bg*3)
- issues:
 - f77: maintenance 'nightmare' !
 - homogeneous B-field only!
 - difficult to use with backgrounds
 - only single BX reconstruction
 - issues at 1–3 TeV
 - no strip tracking (ghost hits)

-> need for a new tracking package

Towards Tracking-SW for the DBD

- had a look into ATLAS tracking code (S.Aplin)
- full featured modern
 PatRec:
 - (combinatorical) Kalman Filter
 - Gaussian Sum Filter, DAF,...
 - modular design
 - hoped for simple integration into Marlin – however
 - rather tight coupling to GAUDI and Athena frameworks
 - algtools, DataVec, logging,...
 - too involved for now

- also checked other
 Tracking/Fitting packages:
 - KalTest
 - developed @ KEK, used by LCTPC, based on ROOT
 - GenFit
 - developed @ TU Munich, to be used for SuperBelle, ROOT based
 - both seem to be good candidates for developing a new iLCSoft tracking package
 - started incorporating KalTest:
 - develop independent TPC patrec
 - use KalTest for track fit

KalTest Kalman fitter package

KalTest

- Kalman Fitting library (Keisuke Fujii et al)
 - recently migrated code base to SVN
 - added cmake build scripts

KalDet

- detector description (geometry and material) for KalTest
 - migrated to SVN
 - currently writing the geometry build up from GEAR
- released in iLCSoft release v01-10!
- both packages are used by LCTPC (MarlinTPC) and ILD / iLCSoft
 - -> try to share as much common code as possible, i.e. is reasonable given the slightly different requirements for testbeam and global detector optimization

KalTest library

- based on ROOT
 - TGeo, TMath, TObjArray
- structured in sub-libraries
 - geomlib geometry
 - kallib Kalman filter
 - kaltracklib Kalman tracking
 - utils utilities
- built into one libKalTest.so
- users need to define their detector classes (KalDet):
 - TVMeasLayer
 - meas. layer, coordinate to track state transform. ...
 - TVDetector
 - position of meas. layer and material properties

- track parameters correspond to LCIO, except:
 - d0_lcio = drho_kaltest
 - omega_lcio = a(cB) * kappa_kaltest
 - phi_lcio = phi_kaltest + PI/2
- Kaltest adopted to use LCIO units:

mm, Tesla, GeV

interface to KalTest

- need interface to KalTest fitter
- would like to have loose coupling between patrec and fitting
- need several iterations between patrec and fitting
 - LCIO::Track class not optimal for that (not designed to be)

Clustering based patrec in TPC

- use NN-Clustering w/ euclidian distance
- cleanup merging regions with pad-row ranges
- assign leftover hits:
 - based on residuals wrt. extrapolated X-ing
 - improved assignment since ILCWS2010
- working on segment merging:
 - based on simple 'circle criterion'
 - implemented chi2 for track state comparison:
 - SUM_i [(PO_i P1_i)^2 / (sigO^2+sig1^2)]
 - not yet optimal -> work in progress

Improved track fit

- at ILCWS2010 shown that pulls where still wrong
 - fixed some issues in the code
 - moved to new consistent units in KalTest (mm, Tesla, GeV)
 - · added errors from LCIO hits
 - parameterization from LCTPC group [F(phi, theta, pt)]
 - introduced dummy material layers (cylinders) for
 - SIT and VXD

- pulls look more reasonable
- sigma still slightly too large
- bias in pT

-> disentangle material description from fit (code) issues: use TPC only events ...

Track Parameter Comparison

- Created a simple refitting Processor to test development of the Tracking API as well as Track Parameter and error determination in the KalTest implementation
 - Takes Icio Tracks produced by LEPTracking and FullLDCTracking and refits the associated hits using the Kaltest Kalman Filter.
 - Presently fits are only determined at the IP
- Testing performed using ILD_00 TPC with inner detectors removed in Mokka.
- Comparison made with Track Parameters and errors determined by FullLDCTracking using single muons at p = 3, 6, 40, 100 GeV and theta = 88, 40, 32 degrees

Δz0 (KalTest / LDC) vs p GeV

Δd0 (KalTest / LDC) vs p GeV

ΔOmega (KalTest / LDC) vs p GeV

ΔPhi (KalTest / LDC) vs p GeV

Δtanλ (KalTest / LDC) vs p GeV

Kaltest Pulls Omega vs p

Kaltest Pulls Omega vs p

Kaltest Pulls d0 vs p

Kaltest Pulls d0 vs p

Kaltest Pulls d0 vs p

Summary

- Started work on a Tracking API for use in Marlin.
- So far minimally implemented using KalTest and TPC.
- The addition of further tracking systems needs the implementation of bounded planar detectors in KalTest.
- Geometry and material budget needs tuning in order to improve Track Parameter errors.
- TPC Pat-Rec currently working on merging of tracksegment found.
- Working on improving the diagnostics.