Study of near-degenerate ẽ

Mikael Berggren¹

¹DESY, Hamburg

ILD physics&analysis phone meeting

Mikael Berggren (DESY)

Study of near-degenerate e

February 9, 2011 1 / 9

Outline

Outline

- Introduction. The model.
- Analyis
- Conclusions.

イロト イヨト イヨト イヨト

Introduction

Introduction: What SUSY means ...

(Preliminary work by M.B., G. Moortgat-Pick)

SUSY associates scalars to chiral (anti)fermions

What if $M_{\tilde{e}_L} \approx M_{\tilde{e}_R}$, so that thresholds can't separate $e^+e^- \rightarrow \tilde{e}_L \tilde{e}_L$, $\tilde{e}_R \tilde{e}_R$ and $\tilde{e}_R \tilde{e}_L$?

Introduction: Model

Model: SPS1a' like, but:

$M_{\tilde{e}_{L}}$ = 200 GeV and $M_{\tilde{e}_{R}}$ = 195 GeV. Both decay 100 % to $\tilde{\chi}_{1}^{0}$ e.

Even with $P_{e^-} \ge +90\%$: No separation of $\tilde{e}^+_{\rm L} \tilde{e}^-_{\rm R}$ and $\tilde{e}^+_{\rm R} \tilde{e}^-_{\rm R}$: Ratio of the cross sections \approx constant.

Introduction: Model

Model: SPS1a' like, but:

 $M_{\tilde{e}_{\rm E}}$ = 200 GeV and $M_{\tilde{e}_{\rm R}}$ = 195 GeV. Both decay 100 % to $\tilde{\chi}_1^0 e$.

Even with $P_{e^-} \ge +90\%$: No separation of $\tilde{e}_L^+ \tilde{e}_R^-$ and $\tilde{e}_R^+ \tilde{e}_R^-$: Ratio of the cross sections \approx constant.

Introduction: Model

Model: SPS1a' like, but:

 $M_{\tilde{e}_{\rm L}}$ = 200 GeV and $M_{\tilde{e}_{\rm R}}$ = 195 GeV. Both decay 100 % to $\tilde{\chi}_1^0 e$.

Even with $P_{e^-} \ge +90\%$: No separation of $\tilde{e}_L^+ \tilde{e}_R^-$ and $\tilde{e}_R^+ \tilde{e}_R^-$: Ratio of the cross sections \approx constant.

Polarised positrons a must !

Analysis: samples

Background and efficiency from Full-sim SPS1a' sample, kinematics from Whizard simulation of the model.

Background and efficiency from Full-sim SPS1a' sample, kinematics from Whizard simulation of the model.

- The ẽ signal was extracted from the same sample as was used for the SPS1a' τ̃study, using the same cuts except
 - Demand exactly two well identified electrons.
 - Reverse the τ̃ anti-SUSY background cut
 - Some cuts could be loosened
- Almost background-free !

- B

Analysis: samples

Background and efficiency from Full-sim SPS1a' sample, kinematics from Whizard simulation of the model.

- The ẽ signal was extracted from the same sample as was used for the SPS1a' τ̃study, using the same cuts except
 - Demand exactly two well identified electrons.
 - Reverse the *τ* anti-SUSY background cut
 - Some cuts could be loosened
- Almost background-free !

Analysis: samples

Background and efficiency from Full-sim SPS1a' sample, kinematics from Whizard simulation of the model.

For the signal:

- Generate (with Whizard 1.95) the modified model.
- Apply the kinematic cuts used for the full simulation analysis.
- Scale down the over-all event-weight so that the efficiency agrees with the full simulation.

∃ ► < ∃ ►</p>

4 D b 4 A b 4

Analysis: The handle

The handle: Opposite polarisation beams produces \tilde{e} :s in both s- and t-channel. Same polarisation produces \tilde{e} :s in t-channel only \Rightarrow

Modification of Θ distribution with changed positron polarisation

However, the effect is small since t-channel always dominates ! \tilde{e} :s are heavy (and are scalars) \Rightarrow t- and s- channel kinematic distributions of the electrons are not very different.

< ロ > < 同 > < 回 > < 回 >

Analysis: The handle

The handle: Opposite polarisation beams produces \tilde{e} :s in both s- and t-channel. Same polarisation produces \tilde{e} :s in t-channel only \Rightarrow

Modification of Θ distribution with changed positron polarisation

However, the effect is small since t-channel always dominates ! \tilde{e} :s are heavy (and are scalars) \Rightarrow t- and s- channel kinematic distributions of the electrons are not very different.

< ロ > < 同 > < 回 > < 回 >

Analysis: the e direction

Need to reconstruct the \tilde{e} direction:

- 8 unknown $\tilde{\chi}_1^0$ momentum components
- Assume $M_{ ilde{e}}$ and $M_{ ilde{\chi}^0_1}$ known ightarrow
- 8 constraints (E and p conservation, 4 mass-relations)
- WORKS !

Analysis: the e direction

Need to reconstruct the \tilde{e} direction:

- 8 unknown $\tilde{\chi}_1^0$ momentum components
- Assume $M_{\widetilde{e}}$ and $M_{\widetilde{v}_{+}^{0}}$ known \rightarrow
- 8 constraints (E and p conservation, 4 mass-relations)
- WORKS !

Analysis: the e direction

Need to reconstruct the \tilde{e} direction:

- 8 unknown $\tilde{\chi}_1^0$ momentum components
- Assume $M_{\widetilde{e}}$ and $M_{\widetilde{\chi}^0}$ known \rightarrow
- 8 constraints (E and p conservation, 4 mass-relations)
- WORKS !

4 A N

Analysis: Observing the shift

Analyse assuming 100 fb^{-1} for each of the polarisations configurations.

- P(e⁻)= +80 % and ..
- P(e⁺) = ± 22 % ...
- P(e⁺) = ± 30 % ...
- P(e⁺) = ± 60 % ...
- ... and for $P(e^{-})=\pm 80 \%$ $P(e^{+})=0$

3

Analysis: Observing the shift

Analyse assuming 100 $\rm fb^{-1}$ for each of the polarisations configurations.

P(e⁻)= +80 % and ..
P(e⁺) = ± 22 % ...
P(e⁺) = ± 30 % ...
P(e⁺) = ± 60 % ...
... and for P(e⁻)= ± 80 % P(e⁺) = 0

< E

Analysis: Observing the shift

Analyse assuming 100 fb^{-1} for each of the polarisations configurations.

P(e⁻)= +80 % and ..
P(e⁺) = ± 22 % ...
P(e⁺) = ± 30 % ...
P(e⁺) = ± 60 % ...
... and for P(e⁻)= ± 80 % P(e⁺) = 0

< E

Analysis: Observing the shift

Analyse assuming 100 fb^{-1} for each of the polarisations configurations.

P(e⁻)= +80 % and ..
P(e⁺) = ± 22 % ...
P(e⁺) = ± 30 % ...
P(e⁺) = ± 60 % ...
... and for P(e⁻)= ± 80 % P(e⁺) = 0

< E

Analysis: Observing the shift

Analyse assuming 100 fb^{-1} for each of the polarisations configurations.

P(e⁻)= +80 % and ..
P(e⁺) = ± 22 % ...
P(e⁺) = ± 30 % ...
P(e⁺) = ± 60 % ...
... and for P(e⁻)= ± 80 % P(e⁺) = 0

Analysis: Observing the shift

Analyse assuming 100 $\rm fb^{-1}$ for each of the polarisations configurations.

Conclusions

- The e cross-section in SPS1a' is huge:
 - Potentially the best *M*_{LSP} measurement ?
- The preliminary determination of the chiral structure of near-degenerate ess
 - Cannot be done without positron polarisation
 - Profits largely even from a modest increase (22 % to 30 % ↔ doubling the luminosity)
 - Lack of FullSim statistics for esis in SPS1a'.
 - More work to be done ...

Conclusions

- The \tilde{e} cross-section in SPS1a' is huge:
 - Potentially the best M_{LSP} measurement ?
- The preliminary determination of the chiral structure of near-degenerate ess
 - Cannot be done without positron polarisation
 - Profits largely even from a modest increase (22 % to 30 % ↔ doubling the luminosity)
 - Lack of FullSim statistics for esis in SPS1a'.
 - More work to be done ...

Conclusions

- The e cross-section in SPS1a' is huge:
 - Potentially the best M_{LSP} measurement ?
- The preliminary determination of the chiral structure of near-degenerate ess
 - Cannot be done without positron polarisation
 - Profits largely even from a modest increase (22 % to 30 % ↔ doubling the luminosity)
 - Lack of FullSim statistics for esis in SPS1a'.
 - More work to be done ...

Conclusions

- The \tilde{e} cross-section in SPS1a' is huge:
 - Potentially the best *M*_{LSP} measurement ?
- The preliminary determination of the chiral structure of near-degenerate ess
 - Cannot be done without positron polarisation
 - Profits largely even from a modest increase (22 % to 30 % ↔ doubling the luminosity)
 - Lack of FullSim statistics for esis in SPS1a'.
 - More work to be done ...