Higgs Branching Ratios using Leptonic Z-Decays

ILD Analysis Meeting, 09 March 2011 Nina Herder, University of Bonn

- Higgs Strahlung Process
- Lepton Identification
- Cuts & Cutflow
- Fitting Method & Branching Ratios
- Summary & Outlook

Higgs Strahlung Process

Z decays to 3% into e^+e^- ($\mu^+\mu^-$)
light SM-Higgs (m _h =120GeV)
E _{cms} =350 GeV

 Identify the two leptons and force the other particles into two jets

Higgs Decay	Pythia BR
bb	65.7%
CC	3.6%
gg	5.5%

- Analysis done for L=250 fb⁻¹, Polarization (-80%,+30%)
- SM-Background: Ilqq, qq, qqqq, qqlv (not all files included yet)

Lepton Identification

- Electron Identification
 - p_{track} > 15 GeV
 - $E_{em}/E_{tot} > 0.6$
 - $E_{tot}/p_{track} > 0.9$

ID-Efficiency (pairs): 86.4%

- Muon Identification
 - p_{track} > 15 GeV
 - $E_{em}/E_{tot} < 0.5$
 - $E_{tot}/p_{track} < 0.3$

ID-Efficiency (pairs): 91.7% for the signal (see next slides)

Loop to get the two hardest leptons

Muon Channel

Signal Definition: Higgs decays into bb, cc, gg

Electron Channel

 Signal Definition: Invariant Di-Lepton Mass (truth information) between 70 and 130 GeV, Higgs decays into bb, cc, gg

- 1. #particles > 10 & Entries in E_{had} , E_{em}
- 80 GeV < di-lepton mass < 100 GeV (105 GeV electron channel)
- 3. 100 GeV< di-jet mass < 150 GeV
- 4. 115 GeV> di-lepton recoil mass < 250 GeV
- 5. $\theta_{ii} < 2.8 \text{ rad}$
- 6. $\theta_{||} < 2.6 \text{ rad}$
- 7. E_{vis} > 250 GeV
- 8. $y_{minus} < 0.7$, $y_{plus} < 0.2$

Muon Channel - Signal Efficiency: 56.2%,

$$\frac{S}{\sqrt{B}} = 19.4$$

Muon Channel - Signal Efficiency: 56.2%,

Electron Channel – Signal Efficiency: 49.6%

Electron Channel – Signal Efficiency: 49.6%

• Use 3-D b-likeness/c-likeness templates and perform a χ^2 -Fit

$$x - likeness = \frac{x_1 x_2}{x_1 x_2 + (1 - x_1)(1 - x_2)},$$

Muon Channel only

$$x = b$$
, c and $x_{1,2}$ b/c – tag value for Jet 1, 2

• Use 3-D b-likeness/c-likeness templates and perform a χ^2 -Fit

$$x - likeness = \frac{x_1 x_2}{x_1 x_2 + (1 - x_1)(1 - x_2)},$$

Muon Channel only

$$x = b$$
, c and $x_{1,2}$ b/c – tag value for Jet 1, 2

$$x - likeness = \frac{x_1 x_2}{x_1 x_2 + (1 - x_1)(1 - x_2)},$$

Muon Channel only

$$x = b$$
, c and $x_{1,2}$ b/c – tag value for Jet 1, 2

• Fit results:

r _{bb}	$XX \pm XX$		
r _{cc}	$XX \pm XX$		
r _{gg}	$XX \pm XX$		
_		_	_

electron channel

r _{bb}	XX ± XX	
r _{cc}	XX ± XX	
r _{gg}	XX ± XX	
muon channel		

Branching Ratios

• Calculation of the Branching Ratios from r_s according to:

 $\sigma(e^+e^- \to Zh) \times BR(H \to s) = r_s \times BR(H \to s)_{SM} \times \sigma(e^+e^- \to Zh)_{SM}$

Results:

S	r _s -BR(H→s)
bb	XX ± XX
CC	XX ± XX
gg	XX ± XX

Summary & Outlook

- Cuts seem to lead to a good Signal to Background Ratio, need to include missing background files to get final results
- Get the template-fit running correctly & improve
- Include a kinematic fit (maybe)

Thank you for your attention.

BACKUP