Higgs Branching ratio study

ILD Analysis meeting Mar. 09. 2011 H. Ono (NDU), A. Miyamoto (KEK)

Higgs Branching Ratio measurement

Measurement of the branching ratio is one of the issue of ILC especially for Higgs quark decays $(H\rightarrow bb/cc)$

Higgs study with different Ecm

Ecm=250 GeV (ZH production threshold around 230 GeV at Mh=120 GeV)

- ZH Largest production cross-section with <u>Z/H almost at rest</u> Suit for <u>mass and cross-section measurement with recoil study</u>
- <u>Higgs-strahlung (ZH) process</u> dominant

Ecm=350 GeV

- Reduce cross-section and <u>Z/H will be boosted</u>
- Increase <u>W/Z fusion process</u> contribution
- <u>tt background</u> should be considered

\rightarrow Higher peak luminosity, better S/N, with top study

	RDR (LOI)			SB2009 w/ TF			NB w/ TF		
Ecm (GeV)	250	350	500	250	350	500	250	350	500
Peak L (10 ³⁴ cm ⁻² s ⁻¹)	0.75	1.2	2.0	0.27	1.0	2.0	0.8	1.0	2.0
Integrated L (fb ⁻¹)	188	300	500	67.5	250	500	200	250	500

Evaluate the effect of different Ecm for BR study

NB : New baseline parameter TF : beam traveling focus

ZH BR analysis procedure

Background reduction

Neutrino (vvH) channel analysis

Selection criteria

- Missing mass (Mz) (80<MM<140 or 50<MM<240)
- Transverse momentum (20<Pt<70 or 10<Pt<140)
- Longitudinal momentum (|PI|<60 or 130)
- 4. # of charged tracks (N<10)
- Maximum momentum (Pm<30 or 60)
- 6. Y value (Y₂₃<0.02, 0.2<Y₁₂<0.8)
- 7. Di-jet mass (M_H) (100<M_H<130)

4f, 2f background is considered tt is also considered at 350 GeV

Better signal significance is obtained at 350 GeV

Di-jet mass after all cuts w/o b-tag

Hadronic (qqH) channel analysis

Selection criteria

- 1. Jet paring χ^2 (χ^2 <10)
- 2. # of charged tracks in jet (N<4)
- 3. Y_{34} (3 \rightarrow 4 Jet paring Y threshold) (Y_{34} <2.7)
- 4. Thrust (<0.9 or <0.85)
- 5. Thrust angle ($|\cos\theta| < 0.9$)
- 6. H jets angle (105< θ <160 or 70< θ <120)
- 7. Fitted Z mass (85<M_z<100)
- 8. Fitted H mass (105<M_H<130)

5 Constraints fit is tried

- ΣP_i=0
- $\Sigma E_i E_{cm} = 0$
- $|M_{12} M_{34}| = |M_{Z} M_{H}|$

Jet pair combination from 4 jets

$$\chi^2 = \left(\frac{M_{12} - M_Z}{\sigma_Z}\right)^2 + \left(\frac{M_{34} - M_H}{\sigma_H}\right)^2$$

Minimum χ^2 pairs are selected

Better signal significance has obtained at 350 GeV

Likelihood variable cut for qqH 250 GeV

Likelihood variable cut is tried to improve the background reduction

Likelihood variable cut at 350 GeV

Lepton mode (IIH) background reduction

BG reduction 1. ee/μμ ID 2.Z mass cut 3. Z cosθ 4.Mh 5.Recoil Mass

Narrow recoil mass distribution in IIH mode from

better momentum resolution at Ecm=250 GeV

Better signal significance can be achieved at Ecm=250 GeV from narrower recoil mass distribution

Now this channel is studied by Nina Herder, Bonne Univ. Please see her status report

Simple cut for qqH channel

Simple flavor tagging cut test with likelihood ratio cut

Measurement accuracy can improve with LR cut. Next test with template fitting

Measurement accuracy of BR

Relative BR with template fitting

To improve the flavor cut efficiency and measurement accuracy of BR template fitting has applied and evaluate the relative branching fraction

Relative branching fraction

$$\frac{Br(H \to c\overline{c})}{Br(H \to b\overline{b})} = \frac{r_{cc}/\varepsilon_{cc}}{r_{bb}/\varepsilon_{bb}}$$

Y ____

 $r_{xx} : N_{xx}/N_{Hall}$ fraction after BG reduction $\epsilon_{xx} : BG$ reduction efficiency

 r_{bb} / r_{cc} are extracted with the $\underline{template\ fitting}$ as fit parameter

Poisson statistics are considered for each template sample bin

$$p_{ijk} = \frac{\mu^{N} e^{-\mu}}{X!} \quad X = N_{ijk}^{data} \quad \mu = N_{ijk}^{template} = \sum_{s=bb,cc,others} \left(\frac{N^{Hall}}{N^{s}}\right) N_{ijk}^{s} + r_{bkg} N_{ijk}^{bkg}$$

$$L = -\log P = -\log\left(\prod_{i,j,k} P_{ijk}\right) = -\sum_{i,j,k} (\log P_{ijk})$$
Template fitting has applied with minimizing L

3D template samples histogram

Template fitting results

From the template fitting analysis for 250 and 350 GeV, better measurement accuracy has obtained at Ecm=350 GeV \rightarrow From the better signal significance

Preiin	Ecm	ΔBR(cc)/BR(bb)	Absolute value of the accuracy					
Neutrino	250	20.7%(28.9%)	bocause low statistics bins are ignored					
(nnH)	350	14.2%	to suppress the over estimation					
Hadron	dron 250 $23.0\% \rightarrow 18.7\%$ (31.3% $\rightarrow 26.0\%$)	 ~25% becomes better in accuracy at 						
(441)	350	16.4%→16.6%	<u>Ecm=350 GeV</u> with vvH, qqH mode.					
Muon	250	39.5%(45.3%)	- Luminosity reduction makes accuracy					
(mmH)	350	43.9%	worse ~25% as same as luminosity scaling					
Electron	250	47.5%(50.9%)	- IIH modes are relatively worse accuracy					
(eeH)	350	37.8%						
Combined	250	13.7%(18.0%)	\rightarrow Accuracy is improved with LR cut at 250 GeV,					
	350	10.0%	(): L=188fb ⁻¹ scaled as RDR250					

Summary and next steps

- BR measurement accuracy has improved at the Ecm=350 GeV about 25%.
- ~25% degradation with L=188fb⁻¹ (RDR250 parameter) as same fraction as peak luminosity reduction
- tt background contribution looks not so large at the 350 GeV (set just 1GeV above the threshold in this sample)
- Recoil mass resolution is much better at <u>Ecm=250 GeV</u>

Backups