Top pair production

Philippe Doublet Thibault Frisson, Roman Pöschl, François Richard

ILD Analysis Meeting, March 9th 2011

Motivations for top studies

- Top = heaviest known fermion, strongly connected to EWSB (our theoretical framework is a composite scenario dual of an extradimensional model)
- Need to measure Ztt couplings (for t_R and t_L)
- Observables of interest :

 $-\sigma(tt)$, A_{LR}, A_{FB}

$$A_{LR} = \frac{N_{top}(e_{L}^{-}) - N_{top}(e_{R}^{-})}{N_{top}(e_{L}^{-}) + N_{top}(e_{R}^{-})} \quad (e^{-} \text{ polar. flip})$$

Error,
$$\Delta A = \sqrt{\frac{1 - A_{FB(LR)}^2}{N}}$$

$$A_{FB} = \frac{N_{top}(\cos\theta_t > 0) - N_{top}(\cos\theta_t < 0)}{N_{top}(\cos\theta_t > 0) + N_{top}(\cos\theta_t < 0)} \quad \text{(top direction)}$$

Topology studied : semileptonic top

- We study semileptonic top decays, i.e.
 tt→(bW)(bW)→(bqq)(blv)
 - -1 lepton (\rightarrow top charge) + 4 jets (2 b jets + 2 light jets = W)
 - Combinatorics reduced : (b_1W) or (b_2W) only
 - Lepton angular distribution gives hints on CPV
- We need :
 - Excellent lepton ID + selection
 - Excellent B tagging for 1 jet (b jets come in pairs)
- The data samples used are those of the LOI (full simulation + reconstruction)

Lepton identification

Particle	Momentum cut	Identification	Efficiency
Muon	P _{track} > 5 GeV	$E_{calo}/P_{track} < 0.5$	99.4%
Electron	P _{track} > 5 GeV	$E_{calo}/P_{track} > 0.8$ $E_{ecal}/E_{calo} > 0.9$	97.9%

Rather loose cuts but :

- A muon may pick a small pion cluster in the calorimeter (also with electron / photon)
- We kill other candidates with an isolation method (see next slides)

Isolation method

- Force 4 jets topology \rightarrow lepton embedded into a jet
- The lepton from W decay must be « leading » or « isolated »
 - Kills pions faking muons (always inside a jet)
 - Kills leptonic b decays (neither leading, nor isolated)

Not isolated (lepton from b)

Red = leptons in semileptonic top events Blue = leptons in full hadronic top events = leptons from b

Results with isolation

Lepton	P « good » W→lv	P « bad » (mis- id)	Efficiency	Contamination (1-purity)
Muon	86.7%	1.8%	85.3%	0.24%
Electron	82.7%	1.6%	81.7%	0.28%

- Efficiency rather good (strong isolation constraints)
- Excellent purity to deal with full hadronic top background
- Will force N_{leptons} = 1 (rejects ZZ→bbll background)
- tau → lvv channel gives a 20% contribution to add

B tagging

- 1 well tagged b jet is enough (1 b jet comes with another)
- Btag > 0.5
- Efficiency = 90.2%
- Purity = 98.2%
- \rightarrow Good for highest btagged jet
- → Second highest is more problematic (not used here)
- Efficiency = 48.8%
- Purity = 96.2%
- Discussed a while ago (maybe decay length and problems in jet clustering)

Pairing b and W

We use the constraints on the top energy and mass :
 E_{top} = 250 GeV, M_{top} = 174 GeV

• Minimise
$$d_{1,2} = (E(b_{1,2}W) - 250)^2 + (M(b_{1,2}W) - 174)^2$$

Signal and background left

Process	Efficiency after Nlep = 1	Efficiency after highest btag > 0.5	Relative cross- sections	Fraction left w.r.t SL signal		
tt \rightarrow SL (e, μ)	85.3% , 81.7%	78.5% , 75.3%	1	77%		
tt \rightarrow SL (τ)	20.6%	19.3%	~ 0.5	9%		
tt \rightarrow hadronic	1.7%	1.4%	~ 3	4%		
bb	9.0%	6.0%	~ 14	84%		
ww → qqlv	53.1%	4.4%	~ 34	150%		
$\bigwedge \qquad \qquad$						

More work on these backgrounds is needed

Cut on m_W/m_{top}

- Black = SL top
- Red = had top
- Blue = bb
- Green = WW_{sl}

This final cut should remove almost all remaining backgrounds

Need to work on it

Conclusions and outlook

- Top pair production is studied to measure $\sigma(tt)$, A_{LR} and A_{FB} + CPV from lepton \rightarrow < 1% precision expected
 - Need to find 1 isolated lepton :
 - > 80% efficiency and > 99.5% purity
 - Need 1 well b-tagged jet (btag > 0.5) :
 - > 90% efficiency and > 98% purity
- Major backgrounds are being checked :
 - Full hadronic tt is killed by isolated lepton
 - Still bb and WW_{sl} left (large cross-sections)
 - Work on it maybe use m_w/m_{top} cut
- Derive sensitivites on observables and Ztt couplings