Top studies : curing WW

Philippe Doublet Thibault Frisson, Roman Pöschl, François Richard

ILD analysis meeting, April 6th 2011

Introduction

- We focus on top pair production, semileptonic channel tt→(bW)(bW)→(blv)(bqq)
 - Observables : $\sigma(tt)$, A_{LR} , A_{FB} , lepton angular distribution
 - Topology : 1 lepton + 4 jets (2b + 2 light jets)
 - Needs : 1 isolated lepton, 1 well Btagged jet
 - Use of LOI DSTs

150

100

Signal and background (as of last month)

Process	Efficiency after Nlep = 1	Efficiency after highest btag > 0.5
tt \rightarrow SL (e,µ)	85.3% , 81.7%	78.5% , 75.3%
tt \rightarrow SL (τ)	20.6%	19.3%
tt \rightarrow hadronic	1.7%	1.4%
bb	9.0%	6.0%
ww → qqlv	53.1%	4.4%

Remarks :

- tau decay mode adds statistics
- hadronic mode cured (no isolated lepton)
- some bb left (different topology)
- WW_{sl} left (bad lepton efficiency, bad btag purity)
- 1. To cure bb background (and most WW), use « thrust » as a precut (next slide)
- 2. Something is wrong with WW \rightarrow First step towards WW studies
- 3. Some problems with 2 fermions cross-sections in Whizard : $\sigma(bb)_{unpol} = 2473 \text{ fb} (Whizard) - 370 \text{ fb} expected at tree level}$ 4 and 6 fermions seem correct

Precut on thrust

• Process well separated

 2 peaks for bb (smallest thrust when one jet is lost E≈250 GeV, highest when E≈500 GeV)

Process	Fraction left after Thrust > 0.9
tt → bbcsμv	99.0 %
bb	12.6 %
WW → csµv	10.7 %

Semileptonic WW issue : hadronic mass

In WW_{sl} events : WW/Wev→csev After finding an isolated lepton, look at M(rest) = M(W) → Interesting cut but → Rather large tail

We investigated these WW events to understand where the lepton was lost \rightarrow leads to better WW understanding and lepton selection

Non associated tracks

- We find some nonassociated tracks in the forward (and central) regions
- Well measured (small Δp) and large p
- For electrons : a photon cluster with ~ same energy is closeby but not associated →Energy is not lost but leads to wrong PID
 For muons : energy is lost !

Event display of a csev event : one track is not associated to its cluster while momenta and positions are very close.

Proof : non associated tracks

P vs cos(θ) of non associated tracks in csµv events (µ⁻ only) $\approx 40 \%$ of WW_{sl} and tt_{sl} events contain non associated tracks → Major problem for leptons in WW but minor in tt

Getting the leptons back

After discussions with Mark Thomson :

- Maybe PandoraPFANew can cure the problem (no answer yet) but need to run on REC files
- We apply a simple recovery patch using a cone around the non associated track $(cos(\theta)_{cone} = 0.95)$
 - Electron : if leading photon in cone ($E_y/E_{cone} > 70\%$) and energies match $|E_y-P_{track}|/P_{track} < 30\%$ then promote track+photon to electron
 - Muon : if $E_{cone}/P_{track} < 50\%$ then promote track to muon

Recovered leptons

Process	Efficiency to identify a lepton among non associated tracks	Purity of the identification
WW (μ)	15.3 %	96.7 %
WW (e)	16.3 %	93.6 %
tt (μ)	2.6 %	82.4 %
tt (e)	6.4 %	83.9 %

• Efficiency is small (a lot of non associated tracks come from charged hadrons) but very good purity

- Efficiency and purity are different for WW and tt : patch made for forward tracks in WW, tt has more particles and is « spherical »
- Efficiency is the same for e/μ in WW but different for e/μ in tt ! (not yet understood)

New figures

Process	Thrust > 0.9	+ Nb Lepton = 1 [contamination]	+ Mhad > 150	+ Highest Btag > 0.5
bbcsμv bbcsev bbcsτv	99 % 99 % 98.6 %	87.2 % [0.3 %] 86.5 % [0.4 %] 22.5 %	87.1 % 86.4 % 22.4 %	79.6 % 79.0 % 21.0 %
bb	12.6 %	1.3 %	0.5 %	0.4 %
csμv	10.7 %	10.0 %	4.9 %	0.5 %
csev	30.7 %	22.2 %	5.8 %	0.5 %

Need to have a look at ZZ background Further step : top reconstruction for A_{FB}

Efficiency – Contamination estimation :

- Signal is tt \rightarrow bbqq(e, μ)v : ϵ = 79.3 % « + taus »
- Background here is bb and WW \rightarrow qqlv : Cut on m_W-m_{top} not yet added (should gain factor > 6 in purity) P_{top} \approx 99% expected

Our purity = « finding the good lepton from SL tops» = Cont._{top} + Cont._{lep}

Conclusions

- Semileptonic top study with ILD
 - Efficiency close to 80 % with ~ 99 % purity of good lepton expected
 - Room for improvements : lepton finding and Btagging
- To do :
 - Check minor backgrounds like ZZ
 - Combine results together to get $\sigma(tt)$, A_{LR} , A_{FB} + systematics