Status of Strip Clustering

K. Kotera, Shinshu university Physics and Software meeting of ILD Asia 21st January 2011

with Latest Mokka, PandoraPFANew, and Daniel's Splitting module for hybrid ECAL

To get the following steps;

- to get better JER (at least Mark's result)
- more realistic simulation (implement some dead volume from MPPC, reflector, cable, ...
- to study hybrid ecal
- confirmation of our last result (IWLC)
- I am trying to use:
 - Latest Mokka, mokka-07-05 implemented scintillator strips realistic geometry (MPPC, Fiber, board,..)
 - PandoraPFANew
 - easier tuning of parameters
 - D. Jeans' Splitter module for Si-Sc hybrid Ecal Lighter than my version

Results for √s = 91GeV two-jet events shown at IWLC Nov.2010

-good performance of strip-splitting method was presented in Nov.
2010.

-For center energy 91, 200, 360, and 500 GeV JER of Sc strip ECAL with Strip-splitting method has the similar JER by 5x5 mm² square cell ECAL.

Combination of PandoraNew, Mokka latest and Daniel's strip-splitting

JER with ScE 5x5 mm², ScE virtual 5x5 mm² and ScE 45x5 mm² w/ splitting method have almost common JER

Strip-splitting performance shown in IWLC was confirmed with New Mokka simulation, in which strip shape is intrinsically implemented.

Combination of PandoraNew, Mokka latest and Daniels strip-splitting

JER with ScE 5x5 mm², ScE virtual 5x5 mm² and ScE 45x5 mm² w/ splitting method have almost common JER

Strip-splitting performance shown in IWLC was confirmed with New Mokka simulation, in which strip shapes are intrinsically implemented.

SiECAL has better performance→ we need tune for ScECAL

Two photon clusters in SiEcal and ScStirpEcal with Splitting method

Energy resoution of 10 GeV two photon events

-There is no large differences between SiECAL and ScECAL 45 x 5 mm w/ splitting method, although Enegy resolution of ScECAL is slightly degrades as distance of photons decreases.

Efficiency of two-cluster events for two-photon events

-Most clearly different point between Si and ScEcal is efficiency of two-cluster events. -When distance of two photons is larger than 6 cm, two-cluster event efficiency by ScECAL is better than SiECAL. However, when the distance becomes smaller than 7 cm, the two-cluster event efficiency of ScECAL steeply drops down.

Efficiency of events having more than 2 clusters.

-SiECAL does not have one-cluster events with two photon distance greater than 3 cm and many 3 cluster events. This means that SiECAL is tuned to have higher sensitivity toward cluster separation.... although I used same analysis code....?

Moliere radius of 10 GeV in ECAL

Summary

- Crosscheck for IWLC results have been partially done.
 - Strip-Splitting for 45 x 5 mm² ScECAL with latest mokka and Daniel's code made similar performance to my code.
- Difference between SiECAL and ScECAL still remains.
 - SiECAL and ScECAL do not have large difference of the energy resolution of 10 GeV photon from each other.
 - also cluster radius..
 - But ... Large difference of two cluster separation between Si and ScECAL despite using common cell size (5 x 5 mm).
 - I am seeking cause of this difference.

Mean values of 10 GeV two photon events

-45 x 5 mm2 ScECAL made a little smaller mean value than virtual 5 x 5 mm cell ScECAL. This can be improved by tuning of sensitivity