SD-HCAL technological prototype – Chamber and cassette production

Nick Lumb Lyon, 3 February 2011

Considerations for a technological prototype

- Build one HCAL module for testing in beams at CERN and / or Fermilab
- Simplifications:
 - All detectors 1m x 1m
 - Only 40 planes (possibility to extend to 50)
- □ Challenges:
 - Detector + electronics thickness < 6mm</p>
 - Minimize dead zones
 - Homogeneous gain
 - Efficiency >90% + minimize multiplicity
 - Full integrated electronics with power pulsing
 - Realistic support structure for absorbers + RPCs

Chamber performance: key design parameters

- Homogeneity of gain / efficiency
 - Constant gas gap over large areas
 - Efficient gas distribution within chamber
 - No air gaps between readout pads and anode glass
- Optimization of multiplicity
 - Absolute value of coating resistivity
 - Higher values give lower multiplicity
 - Lower values improve rate capability
 - **Compromise:** 0.5-10 M Ω / \Box
 - Uniformity of resistivity over surface

Resistive coating

	Licron	Statguard	Colloidal Graphite type I	Colloidal Graphite type II
Surface resistivity $(M\Omega_{\Box})$	~20	1-10	~0.5	Depends on mix ratio; choose ~0.7
Best application method	Spray	Brush	Silk screen printing	Silk screen printing
Cost, EUR / kg	130	40	670*	240*
Delivery time (weeks)	3	<1	6	6

*Estimate 20m² (10 chambers) / kg using silk screen printing technique

Licron: fragile coating, problems with HV connections over time Statguard: long time constant for stable resistivity (~2 weeks), poor homogeneity

Baseline for 1m³ is colloidal graphite type II

Resistivity as a function of mix ratio

	Electrodag 6017 SS (% by weight)	Electrodag PM-404 (% by weight)	<u>Approx. sheet resistance</u> (Ohm/sq. at 25 µm dry coating thickness
	100	0	35
Company spec. —	90	10	50
	80	20	70
	70	30	105
	60	40	170
	50	50	290
	40	60	675
	30	70	2160
	25	75	4500
	20	80	35000
	10	90	> 10 ⁹

Silk screen printing at local company

Product requires curing at 170°C – company has suitable drying tunnel

Surface resistivity: first 54 glasses (27 RPCs)

Cross-section of Lyon 1m² glass RPCs

Total thickness: 6.025mm

Ball spacing – FEA study

Re-inforcement spacers

- FR4 spacers 6 mm diam. x 1.15 mm glued at red positions
- Yellow grid indicates ceramic ball positions
- 81 balls + 13 re-inforcement spacers

Chamber gluing details

Weights used to ensure flatness during glue drying

RLypa

Gas distribution

May be an issue for large area, very thin chambers

Gas - speed distribution

Quality checks: RPCs

- Tin-coated side of glass identified prior to silkscreen printing (paint always on this side)
- Systematic measurements of surface resistivity of coated glasses:
 - 13 measurement points per glass
 - Commercial concentric ring probe to EN 61340-5-1 and ESD-S11.11
- Chamber walls fabricated in-house thickness checked after production
- Thickness of assembled chambers checked for first units (3.0 mm); this is not measured systematically

Cassettes: components

□ Stainless steel plates: laser cut by local company

- Basic dimensions and cut-outs for DIFs
- Many threaded holes for assembly, ASU fixation, DIF fixation, HV connectors, LV connectors, gas pipe supports,...
- Walls: standard bars from local company (see later for problems)
- □ DIF supports: local company
- □ HV + LV connector supports: in-house
- □ Gas pipe supports: in-house
- Attachments for crane manipulations: in-house

Protective cassette for RPC + electronics

- 2x SS plates 2.5mm thick
- Contribute to absorber layers (15mm + 5mm)
- PCB supports in polycarbonate cut with water jet
- PCBs fixed to support using M1.6 screws

Cassettes: assembly

- □ Walls screwed to lower plate
- □ Lower 175µ Mylar cut and formed, placed in cassette
- Chamber slides into cassette
- Add silicone glue lines between chamber and cassette walls
- □ Add upper 50µ Mylar
- □ Scotch PCB spacer layers to upper plate
- □ Fix assembled PCBs to upper plate with M1.6 screws
- □ Close cassette with upper plate + electronics
- □ Fix DIFs to their supports and screw onto cassette
- □ Add supports for all connectors
- □ Solder HV connector to contacts on the glasses
- □ Fix gas tubes to cassette

Transport / storage racks

- For storage of finished cassettes
- ~50 kg / cassette: 7 cassettes per rack
- Welded tubular steel
- Relatively cheap: 7 racks ordered

Quality checks: full detector

- Thorough visual inspection and cleaning of all cassette components
- Visual check of bending of cassette cover (see later)
- Systematic verification of overall cassette thickness (11.0 ± 0.1 mm)
- □ HV test at 8kV
- Gas circulation test with dry air
- Transfer to dome for full readout testing

Problems and solutions (1)

- Chambers expand when gas introduced, breaking glue joints
 - Gluing procedure improved for upper (anode) glass
 - Reinforcement spacer distribution improved
 - Bubbler liquid levels reduced (Δp over bubbler found to be the largest pressure drop in the system)
 - $\Delta p = \rho g h = 0.9 \text{ mbar} \equiv 90 \text{ N/m}^2 \text{ for 5mm oil height}$
- Electronics not in full contact with anode glass when cassette vertical, leading to reduced detector efficiency
 - Cassette covers are passed through a rolling machine to make them curve slightly inwards – ensures light pressure on electronics

Problems and solutions (2)

Difficulty in manufacture of cassette spacers

- Original design required 6.15 x 5.00 x 1440 mm stainless steel bars
- Machining of bars introduced unacceptable curvature
- Solution: reduce chamber thickness by 0.1 mm and use standard 6 x 6 mm bars
- Dimensional tolerances off the shelf are very good (±50 µ)
- But adds `unecessary' 2mm to overall width of cassette

Conclusions + Outlook

- Construction of 1m² GRPCs with good detector performance well understood
 - Uniform resistive coatings
 - Constant gas gap + optimized gas distribution
- Construction of 50 chambers well underway:
 - Lab infrastructure and procedures in place
 - Glass, paint, spacers, etc. all in hand
 - 23 chambers already built
 - More than 50% of glasses already have resistive coating (final silk screen run within next 2 weeks)
- Cassettes designed and tested
 - 1 x final cassette + chamber + electronics assembled
 - 3 x final cassette + chamber assembled
 - 2 x final cassette + chamber being assembled,...

