GRPC SDHCAL REVIEW: ASIC + DIF

IPNL Lyon, LAPP Annecy, OMEGA/LAL Orsay

OUTLINE

- □ Very Front End ASIC
- PRODUCTION TESTS
- Detector InterFace board (DIF)

64 inputs

- □ Current preamp with **8 bits** gain correct: G=0 to 255 (analog G=0 to 2)
- **3 shapers**, variable Rf,Cf and gains:
 - □ Fsb1, G= ½,**1/4**,1/8,1/16
 - □ Fsb2, G= 1/8,**1/16**,1/32,1/64

3 discriminators

- 3 10 bit-DACs to set the thresholds (100fC, 1pC, 10pC)
- Encoded in 2 bits
- Auto-trigger down to 10fC up to10pC
- Store all channels and BCID for every hit in a
 127 bit deep digital memory
 - Data format : 127 (depth)*[2bit*64ch+24bit(BCID)
 - □ +8bit(Header)] = 20 320 bits
- 872 SC registers, default config
 Mask of bad channels

□ Full power pulsing: < 10µW/ch

2011, Feb 3

SDHCAL review,

HARDROC2 http://omega.in2p3.fr/

ASIC : HARDROC versions

AMS 0.35µm SiGe

HARDROC1 (Sept 2006):

- I FSB and 2 discriminators
- 240 staggered pads, QFP240 package 3.4 mm thickness

HARDROC2 (June 2008) and 2B (June 2009):

- Versions 2 and 2B very similar, 3 FSB, 3 discris
- 160 aligned pads, Thin package TQFP160 = 28 mm x 28 mm x 1.4 mm

HARDROC1, 240 staggered pads

HR2 Trigger path : fast shaper, DAC, Xtk

□ Fsb0: **Typically 2mV/fC** (variable by a factor 10)

3 integrated DACs to deliver threshold voltages
 Residuals within ±5 mV / 2.2V dynamic range. INL= 0.2% (2LSB)

2.1 mV/DAC Unit ie 1 fC/DAC Unit (fsb0)

Digital part for DAISY CHAIN readout

- Open collector, low voltage signals
- Low capacitance lines

pin112

Main signals of the DAISY CHAIN

COMMON to all the ROC chips

StartAcq

□ Start acquisition, generated by DAQ

ChipSat (Open Collector signal):

- Generated by chip, « 1 »: digital memory is full or acq is finished
- StartReadout:
 - $\hfill\square$ Generated by DAQ, start of the readout

EndReadout

- □ Generated by chip, End of the readout
- Dout: data out (OC signal)
- TransmitOn (OC signal)
 - Generated by chip, Data out are transmitted

Buffers integrated for OC signals

No conversion in Hardroc

Redundancy and bypass of the OC lines: Doutb and TransmitON

- □ 2 data line/chip (Dout1b and Dout2b), chosen via SC
- □ 2 TransmitOn lines /chip
- □ Each one is removable from bus line by SC

Allow to remove buffers which stick the bus line

Redundancy and bypass: StartReadOut and EndReadOut

□ Bypass : SRO, ERO → SRO-B, ERO-B

In red, StartReadOut and EndReadOut flow if chip "N" fails

- □ Chip N can be bypassed using SC parameters
- □ Chip "N-1" and chip "N+1" can bypass chip "N" by SC
- □ If Chip N fails :
 - Chip N-1 sends EndReadOut signal on EndReadOutBypass
 - Chip N+1 reads StartReadOut signal on StartReadOutBypass

Slow Control: bypass

In red, SC flow if chip "N" fails

- Default position is chip "N" reads chip "N-1"
- □ If Chip N fails :
 - Switch N removed
 - □ Switch N+1 → in position to read chip "N-1"
- 3rd generation of ROC chips: I2C link

2011, Feb 3

SDHCAL review, N.Seguin-Moreau

POWER PULSING

HR2 power consumption measurement:

- □ 29 mA x 3.3V ≈ 100 mW => **1.5 mW/ch**
- ☐ 7.5 µW/ch with 0.5% duty cycle

Preamp	5.46 mA	DAC	0.84 mA
3 FSB	12.3 mA	BG	1.2 mA
3 Discris	7.3 mA	vddd 2	0.4 mA (=0 if 40MHz OFF)
TOTAL	29 mA		

- 4 Power pulsing lines : analog, (conversion), dac, digital
- Each chip can be forced on/off
 by slow control

POWER PULSING: « Awake » time

- All decoupling capacitors removed
- □ PWR ON: ILC like (1ms,199ms)
- □ PP of the analog part:
 - Input signal synchronised on PWR ON
 - Awake time= 8 µs

Power pulsing of the DAC: 25 µs (slew rate limited)

Power pulsing sequence

- 4 Power pulsing lines : analog, conversion, dac, digital
- Each chip can be forced on/off by slow control
- Timings detailed in Eudet-Memo-2010-05, Frédéric Dulucq, <u>http://www.eudet.org/e26/e28/</u>

Readout Electronics in TESTBEAM: Power-Pulsing

Power pulsing was successfully tested on a 24-ASIC electronic board. The board associated to a GRPC was also successfully tested in a 3-Tesla B field in June (SPS-H2)

SDHCAL review, N.Seguin-Moreau

Production run

Production run launched in March 10

Reticle size : 18x25 mm²

- 50-55 reticles/Wafer
- 25 wafers needed

Ginal arrangement:

Calice » chips produced:

7 Hardroc 2b	=> ~9000 chips
1 Spiroc 2a	=> ~1200 chips
1 Spiroc 2b	=> ~1200 chips
1 Skiroc 2	=> ~1200 chips

- Additionnal chips produced:
 - □ 1 Spaciroc : JEM EUSO experiement
 - 1 Maroc 3 : for PMT readout
 - □ 3 Spiroc 0 (SPIROC « light » version)
 - □ => cost reduction for CALICE

Packaging

- Wafers received from AMS at the end of June and sent directly to I2A Technology (Fremont, USA) for packaging
- □ Thinning of the wafers down to 250µm

Dicing

Packaged chips and bare dies received at the end of August
 HR2b: 10 510 packaged in TQFP160 + ~ 1 000 bare dies
 SPIROC2A: 973 in TQFP 208, 661 bare dies
 SPIROC2B: 195 in TQFP208, 1 469 bare dies

SKIROC2: 1 671 bare dies

PRODUCTION TESTS

- □ ~10 000 chips to be tested with a dedicated testbench in IPNL Lyon
- Dedicated Labview program, USB interface, testboard, programmable generator (GPIB), precise multimeter (Keithley)

PRODUCTION TESTS

- Measurement of the DC levels and power consumption
- Test of the Slow Control loading
- Memory test
- DACs linearity
- Trigger efficiency measurement
 - Pedestal for the 3 shapers
 - 100 fC trigger efficiency measurement for fsb0 + gain correction for each channel

1 pC trigger efficiency measurement for fsb1 and ^{2011, Feffsb2}

CALIBRATION

RPC signal: dirac current

- Fsb0: for input charges from 10fC up 100fC
- □ Fsb1: for Qinj from 100fC to 1pC
- □ Fsb2: for Qinj from 1pC up to 10pC

MAXIMUM Qinj through Ctest: about 9pC (protection diodes)

Fast Shaper Linearity: 64 channels

EXAMPLE FOR CHIP B10X3Y7

190

DAC

200

210

180

Statistics: 9500 H2B, 50% trigger efficiency point after gain correction

TEST PROTOCOL

SEQUENCE OF TESTS	VALUE(Mean) : 9500 H2B	DEV
Conso Power ON (Vcc)	220 mA	2
Conso Init System (Vcc)	209.8 mA	1.1
Conso Power SC (Vcc)	228.8 mA	0.7
Conso before load SC	18.7 mA	0.2
Conso after load SC	37.9 mA	0.4
V_BG	2.486 V	0.02
DC_FSB0(Chan20)	2.141 V	0.02
DC_FSB1(Chan20)	2.148 V	0.02
DC_FSB2(Chan20)	2.148 V	0.02
Memory(DAC0:300):Inj Ctest All Chan	ALL Chan Trig0	
Memory(DAC1:200):Inj Ctest All Chan	ALL Chan Trig1	
Memory(DAC2:200):Inj Ctest All Chan	ALL Chan Trig2	
Linearity_DAC0 (1, 2, 4, 8, 16, 32, 64, 128, 256, 512)	Slope = -2.16 mV/dac	0.072
Linearity_DAC1 (1, 2, 4, 8, 16, 32, 64, 128, 256, 512)	Slope = -2.15 mV/dac	0.070
Linearity_DAC2 (1, 2, 4, 8, 16, 32, 64, 128, 256, 512)	Slope = -2.17 mV/dac	0.068
SCurve_PedestalDAC0(Step=1)	98.9 dac	1.8
SCurve_PedestalDAC1(Step=5)	96.3 dac	1.2
SCurve_PedestalDAC2(Step=5)	96.8 dac	1.2
SCurveDAC0(100 fC):(Step=1)	191.3 dac	6.5
SCurveDAC0_Gcorr(100 fC):(Step=1)	191.2 dac	2.6
SCurveDAC1(1 pC):(Step=10)	354.5 dac	15.7
SCurveDAC2(1 pC):(Step=10)	238.3 dac	10.6
Load SlowControl(Num=100): 872 param(1010101)	100%	

Production speed : 160 Chips/24h SDHCAL rev

ALL: VALID[8155+1382=9537(92.59%) FAULTY[763(7.41%)]

YIELD : 92.59 %(9537)

DIF Digital InterFace

Readout Electronics : DIF

- The DIF (Detector InterFace) = interface between the ASICs and the DAQ system.
- Standardized interface for all detectors, to manage the daisy chain using the token ring readout

MAIN FEATURES OF THE DIF

- Slow Control parameters: Received from a PC and transmitted to the ASICs
- □ Launch of the acquisition, performs analog/digital readout and transmission of the data received from ASICs to a PC.
- Communication with other DIFs
- □ Communication with DAQ either by USB or by HDMI
- □ The DIF should be able to handle more than 100 ASICs theoretically. The max which has been tested is 48

DIF Architecture

- □ Cyclone 3 Altera FPGA (EP3C6F484)
- □ **Samtec Connector** for SC parameters and analog/digital readout.
- □ 2 different ways to be connected to the DAQ:
 - **USB connector** (used for standalone tests, debugs and first beam tests)
 - □ **HDMI connector** (to be used with the prototype DAQ).
- Connector to communicate with another DIF
- Monitoring of the temperature of the DIF and of the current consumption of the digital and analog part of the ASICs.

DIF production and controls

- 190 DIFs already produced and tested using a specific test bench.
- Only 7 were rejected (soldering pb for 5 of them)
- □ 183 DIFs are ready to be used
- □ 3 DIFs/1 m²

CONCLUSION

- □ 10 300 HR2b tested
 - Test: Yield 93%=> 9537 HR2B available to equip 66 cassettes
- Validation of a 1m² in test beam
 - Asics and DIF
 - Power pulsing (no external components)
 - Daisy chain

READOUT ELECTRONICS BACK UP SLIDES

Analog to Digital schematics

2011, Feb 3

TIMINGS: ILC/TESTBEAM

Bunch Crossing Train

ILC

No conversion in Hardroc

SC pb solved in HARDROC2b: Buffers added on the Clk only

64 x 8 bits= 512 SC parameters for Gain correction

100% success for the SC @ Vdd=2.6V, temperature increased

 36 HR2b measured in Lyon: 100% success when sending the difficult SC config=10101...10, 100 times 2011, Feb 3
 SDHCAL review, N.Seguin-Moreau

DIF: SAMTEC pinout

90 pins common connector (DIF task force)

□ Reliability:

 <u>Data, TransmitOn,</u> <u>StartReadout and</u> <u>EndReadout signals</u>: doubled for redundancy, bypass using SC

2Samtac3FSH/	SFMH ?
--------------	--------

	N pins
Analog	. 3
User Single Ended	22
Controls Single Ended	5
Digital Readout	12
Power pulsing controls	5
LVDS signals	16
Slow controls signals	8
POWER pins	6
GND	13
TOTAL	90

GND	1	2
MUX3_CSn	3	4
MUX2_CSn	5	6
MUX1_CSn	7	8
spare1	9	10
MUX_ENN	11	12
MUX_WRN	13	14
spare2	15	16
en_otaq	17	18
GND	19	20
SR reset	21	22
hold	23	24
spare3	25	26
ŚR IN	27	28
spare4	29	30
SR OUT	31	32
spare5	33	34
SR clk	35	36
GND	37	38
TransmitOn 3	39	40
Pwr analog	41	42
TransmitOn 2	43	44
Pwr dac	45	46
Pwr ss/Pwr sca	47	48
GND	49	50
TransmitOn 1	51	52
Pwr digital	53	54
TransmitOn 0	55	56
Pwr adc	57	58
SC SROUT	59	60
SC SROUT BYPASS	61	62
SC select	63	64
SC clk	65	66
User IVDS P	67	68
Tria Ext P	69	70
	71	72
Clk 5MHz 0 P	73	74
Clk 5MHz 1 P	75	76
GND	77	78
Clk 40MHz 0 P	79	80
Clk 40MHz 1 P	81	82
	83	84
Raz Chn P	85	88
Val Evt P	87	20
	07 80	00
	09	30

2	GND
4	Analog_0
6	GND
8	Analog_1
10	GND
12	C test
14	GND
16	MUX_A4
18	MUX A3
20	MUX_A2
22	MUX_A1
24	MUX_A0
26	Ramfullext
28	Reset_BCID
30	GND
32	Resetn
34	Start_Conv_daqb
36	End_Readout
38	Start_acq
40	RamFull
42	Dout_3
44	GND
46	Dout_2
48	Start_Readout
50	Trig_ext
52	Start_Readout_Bypass
54	Dout_1
56	GND
58	Dout_0
60	SC_SRIN_BYPASS
62	SC_SRIN
64	SC_reset
66	SC_load
68	User_LVDS_N
70	Trig_Ext_N
72	AVDD
74	Clk_5MHz_0_N
76	Clk_5MHz_1_N
78	GND
80	Clk_40MHz_0_N
82	Clk_40MHz_1_N
84	AVDD
86	Raz_Chn_N
88	Val_Evt_N
90	AVDD

SDHCAL review, N.Seguin-Moreau

HV sparks (ESD)

- **GRPC**: HV=8 kV, PADs= a few pF
- ASIC inputs:
 - protection PADs (AMS library): robustness up to 2kV HBM (100pF)
 - □ High spread resistor= isolates FE inputs

TEST BENCH measurements:

CALIBRATION

- RPC signal: dirac current
 - □ Fsb0: for input charges from 10fC up 100fC
 - □ Fsb1: for Qinj from 100fC to 1pC
 - □ Fsb2: for Qinj from 1pC up to 10pC

MAXIMUM Qinj through Ctest: about 9pC (protection diodes)

CALIBRATION

RPC signal:
 dirac current

Micromegas signal:

Q=i1.t1+i2.t2

=> HARDROC FSB is too fast compared to the megas signal 2011, Feb 3 SDHCAL review, N.Seguin-Moreau

Statistics: 9500 HR2b, DC Level Fast Shaper 0, 1 and 2, Channel 20

SDHCAL review, N.Seguin-Moreau

Consumption after loading Slow Control

STATUS 06/01/2011 : 10300 Chips(H2B) : Tested

Power pulsing sequence (with 5MHz and 40 MHz)

- □ 25 µs or 50 µs between pwrON A+DAC and pwr_ON_D
- 200 ns or 500 ns (stabilisation time of LVDS receivers) between rising edge of Pwr_on_D and rising edge of resetb
- 1 µs or 5µs (internal gestion of the digital reset) between rising edge of resetb and rising edge of START_ACQ
- 2µs between falling edge START_ACQ and falling edge PWR_ON_D (gestion of the end of acquisition by the state machin)
- 2 or 10µs (stop of the pod module) between falling edge of PWR_ON_D falling edge of PWR_ON_A + DAC

POWER PULSING: Power On Digital (POD) module

PowerON start/stop clocks (40 MHz and 5 MHz) and LVDS receivers bias current to meet power budget

Readout Electronics in TESTBEAM

Semi-digital electronics readout system validated in beam conditions (daisy chain,stability, efficiency, no external componant)

