ILC machine and detectors -Introduction and power issues

Felix Sefkow

Linear Collider Detector Power Workshop LAL, Orsay, May 9-10, 2011

- Setting the stage: physics, machine, detectors
- Zooming in: interaction region and sub-detectors
- Switching on: Power pulsing

Physics case

z^χ2

10

8

6

100

150

ACFA LC STUDY

m, = 120 GeV

Mass (GeV)

- If it exists, it will be discovered soon at the LHC
- In any case the LHC will point the way into the future of particle physics

- The ILC is the e+e- machine which
 - is ideally suited for precision physics at 0.3-1 TeV
 - and is ready to be built

1σ

300

0.1

G fitter s

The Physics: What We expect $_{2\sigma}$

200

Theory uncertainty

— Fit including theory errors ---- Fit excluding theory errors

250

100

International Linear Collider Hider Concepts: ILC The International Linear Collider ILC • 500 GeV center of mass, upgrade up to 1 TeV Proven super-conducting RF Main Linac Development of cavity gradient on track Damping Rings • Goal: 31.5 MV/m Main Linac 31 km Electron Luminosity: 2×10^{34} (1.45 x 10³⁴ in top 1%) • Technical Design Report Bunch structure: (machine and detectors) 199 ms l ms due in 2012 370 ns bunch to bunch spacing

Calorimeter for I

e+ e- final states at the ILC

g(fb)

- Q-Qbar events are boring
- Mostly 4-, 6-fermion final states, ee→ ttH → 8 -10 jets
- At ILC 500: E_{jet} = 50...150 GeV
 - Mean pion energy 10 GeV
- At ILC 1 TeV: $E_{jet} < \sim 300 \text{ GeV}$
- Missing energy
- High momentum leptons
- Heavy quarks
- Relatively low rates
- Clean final states, low occupancies
- Low or moderate background

ILC detectors

Detector requirements

- With respect to the LHC:
- Radiation hardness not an issue (except very forward)
- Rate capability not an issue triggerless operation
- Emphasis is on performance: tremendous challenge
- Vertex: 30x smaller pixels, 30x less material
- Tracking: 10x better momentum resolution, 6x less material
- Calorimeter: 2x better jet energy resolution, 100x more cells
 - drives the detector concepts

IC Particle Flow Calorimetry

- ★ In a typical jet :
 - 60 % of jet energy in charged hadrons
 - + 30 % in photons (mainly from $\pi^0 o \gamma\gamma$)
 - + 10 % in neutral hadrons (mainly $_{\mbox{$n$}}$ and $_{\mbox{$K_L$}}$)
- Traditional calorimetric approach:
 - Measure all components of jet energy in ECAL/HCAL !
 - ~70 % of energy measured in HCAL: $\sigma_{\rm E}/{\rm E} \approx 60\,\%/\sqrt{{\rm E}({\rm GeV})}$
 - Intrinsically "poor" HCAL resolution limits jet energy resolution

- **★** Particle Flow Calorimetry paradigm:
 - charged particles measured in tracker (essentially perfectly)
 - + Photons in ECAL: $\sigma_{\rm E}/{\rm E} < 20\,\%/\sqrt{{\rm E}({\rm GeV})}$
 - Neutral hadrons (ONLY) in HCAL
 - Only 10 % of jet energy from HCAL
 much improved resolution

Detector concept

- large radius and length
 - to separate the particles
- large magnetic field
 - to sweep out charged tracks
- "no" material in front
 - stay inside coil
- small Moliere radius
 - to minimize shower overlap
- small granularity
 - to separate overlapping showers

Detector concept

- large radius and length
 - to separate the particles
- large magnetic field
 - to sweep out charged tracks
- "no" material in front
 - stay inside coil
- small Moliere radius
 - to minimize shower overlap
- small granularity
 - to separate overlapping showers

LAL

May 9

2011

ILC detector concepts

- PFLOW involves entire detector:
- ECAL and HCAL inside (CMS-like) solenoid
- Highly segmented and compact calorimeters
- ILD: TPC for highest pattern recognition efficiency, B=3.5T
- SiD, higher B, smaller R, Si tracker, similar calorimeters

Calorimeter for ILC

ILC specifica

- Implications on power from the machine side:
- Bunch structure: duty cycle of 1% suggests power cycling ("power pulsing")

370 ns bunch to bunch spacing

dditional heat load from wake
eld induced currents in the
eam pipe

- SiD calcuclation 30 W, ILD similar
- same order of magnitude as vertex detector read-out

To: Felix Sefkow <felix.sefkow@desy.de> Harry Weerts & Weerts & anl.gov & Marce Demarteau <dema John A." <john@slac.stanford.edu>, Andy White <awhite@u

- power estimates based on kPix chip
 - up to 1024 channels, power pulsed, 20 $\mu W/ch$
 - used in tracking and calorimetry

KpIX Counts	Count	Channels	Power	
Tracker	29630	1024	607	
EMCal	105863	1024	2168	
Hcal	37222	1024	762	
Muons	9049	64	12	
Total	181764		3549	W
				-

M. Breidenbach

- VXD unknown
 - aim < 50-100 W
 - influences design choice
- Power distribution: DC DC conversion, x1/8

ILD sub-detectors

- Examples:
- Vertex detector: detailed studies give 20-30 W
 - based on preset design plus change 0.35 to 01.8 μ
 - take switchable and non-switchable parts into account
- TPC: studies started
 - 100W / m2 assumed, based on S-ALTRO chip, 1.5% duty cycle
- Calorimeters: based on ROC ASIC family from Orsay
 - HCAL, scint option: 8M channels give 300 W
 - 40 μ W/ch, 25 μ W/ch pulsed (1%), 15 μ W/ch DC /SiPM bias)
 - biggest challenge: ECAL, high compactness and channel density

Tests of power pulsing

PWR ON

5 µs 2.00 V

3.01

- Electronics stand-alone:
 - 25 µs relaxation time

Po er C cling: Concept

- Average currents are not critical df
 SiD estimates about 200A for entire detector
 - ILD up to 600 A for ECAL
- Peak currents are 1000x higher: buffer charge locally
 - externally only commercial DC supplies defined by the supplies of the suppli
 - minimize e.m. interference
 - can be done with manageable capacitors
- Still to be worked out for all subsystems

P.Göttlicher

ILC detectors

Power pulsing downsides

- Detector is not sensitive between bunch trains
- Calibration: only 1% of cosmic muons available
 - in a highy granular detector, cosmics are less powerful
 - halo muons are still in time
 - novel techniques: imaging calorimeters use tracks in showers

17

- ILC machine and detectors approaching technical design phase
- Detectors feature extreme channel counts and must meet stringent demands on compactness and material budget
- Accelerator bunch structure suggests power pulsing for the entire detector
 - novelty in particle physics
 - system aspects to be evaluated

Conclusion

- Open issues:
- understand heat loads everywhere, including interfaces, and identify needs for reduction
- develop cooling concepts
- identify needs for insulation between detectors
- Evaluate power distribution concepts
- and develop standards!

Back-up slides