CALICE calorimeters Power Issues

Kieffer Robert IPN Lyon

« Linear Collider Power Distribution and Pulsing workshop »

May 2011, LAL

Outline

≻Intro

- Calice calorimeters overview
- Power dissipation issues:
 - \circ Power pulsing mechanism tested on SDHCAL
 - \odot Active cooling test bench for Si-W ECAL

➢ Conclusion

Hadronic decay of W and Z bosons

Jet energy resolution will be a key feature in the analysis of multijet final state events:

> Exemples: \rightarrow Trilinear Higgs self coupling measurement \rightarrow WW scattering measurement in absence of Higgs

The separation capability of W and Z is mainly driven by the 120 energy resolution. 30%/√E

More than 330 physicists/engineers from 57 institutes and 17 countries from 4 continents, working on different technologies of electromagnetic and hadronic calorimeters .

It aims at developing highly granular calorimeter to be used for future linear colliders but not only.

Highly granular calorimeters

ttbar event $\sqrt{s}=500$ GeV on DRUID diplay

Calice calorimeters

All Calice calorimeters are designed in order to apply successfully particle flow analysis. Compactness, hermeticity, and high granularity are the key words of this development.

Calice calorimeters

Calorimeter	Sensitive Medium	Absorber	Granularity	Number of Channels	Readout Chip	Consumption (PowerPulsed)
Si-W ECAL (ILD oriented)	Silicon Diodes	Tungsten	0.5x0.5 cm ²	≈100M	SKIROC	25µW/ch Tot: ≈2500W
Si-W ECAL (SiD oriented)	Silicon Diodes	Tungsten	0.13 cm ²	≈73M	КРіХ	<20µW/ch Tot: <1460W
Scint-W ECAL (ILD oriented)	Scin. Tiles + SiPM	Tungsten	0.5 x 4.5 cm ²	≈11M	SPIROC	(25+7)µW/ch Tot: ≈352W
AHCAL	Scin. Tiles + SiPM	Iron	3x3 cm ²	≈8M	SPIROC	(25+15)µW/ch Tot: ≈320W
SDHCAL (ILD oriented)	GRPC or µMegas	Iron	1x1 cm ²	≈50M	HARDROC	7.5µW/ch Tot: ≈375W
DHCAL	GRPC	Iron	1x1 cm ²	≈50M	DCAL III	<4 mW/ch No Pow. Puls. Tot: <20kW

Geometry of HCALs

- Different geometries are under consideration to minimize cracks and improve HCALs' hermeticity .
- Absorbers are shaped to make a self-sustained structure.
- The space needed to connect each layer services is also a critical point:
 - Cabling: Power + data + detector interface (DIF)
 - ➤Cooling: Pipes + radiator

Si-W ECAL (ILD oriented)

Scint-W ECAL (ILD oriented)

- Sandwich structure with scintillator-strips (3 mm) and tungsten layers (3.5 mm).
- Extruded scintillator with WLS fibers read with the MPPC.
- Strips are orthogonal in alternate layers (X-Y layers).
- 72 strips x 30 layers = 2160 channels

Scint: 4.5 x 1 x 0.2 cm

09/05/11

Si-W ECAL (SiD oriented)

AHCAL (ILD oriented)

5.4mm

12

SDHCAL (ILD oriented)

Each sensitive cassette contains a readout board stick to a GRPC

DHCAL (SiD oriented)

1m³ physical prototype is currently in testbeam using the mechanical structure of the AHCAL prototype.

kieffer@ipnl.in2p3.fr

Si-W ECAL prototype is in front, and Tail Catcher on the back.

- > 38 active layers each 1 x 1 m² 1x1 cm² readout pads
 ~10,000 pads per layer
- Embedded electronics
 ~350,000 readout channels in total

Power Issues

Power issues

Power Pulsing

Within Calice collaboration, most of our very front chip are designed to be powepulsed (see ROC family on N.Seguin-Moreau's talk).

Using this power mechanism in phase with the ILC beam structure, we can reduce the power dissipation by a factor >100.

We intend to minimise the use of active cooling because of its impact on material budget.

- Nevertheless power pulsing decreases dissipated power but does not extract the remaining part!
- Intermediate cards (DIF+LDA+CCC) hosting FPGAs will also remain permanently powered. 09/05/11

=> A minimum active cooling will be needed.

Power Pulsing scheme

CALI COO Calorimeter for ILC

The analog readout case: SPIROC & SKIROK

Power Pulsing scheme

The semi-digital readout case: HARDROC

Maximum readout duration: 4ms if the 127 memory slot of the chip are used.
 ⇒Most of the time shorter.

• No analog conversion needed (semi-digital =>3 thresholds).

SDHCAL power pulsing test

CALL CO Calorimeter for ILC

The active sensitive unit:

 An electronic board hosting 24 chips connected through a daisy chain scheme is fixed on a 50x33 cm² GRPC detector (1536

• A non-magnetic metallic cassette contains this assembly.

09/05/11

A testbeam under B field

June 2010: 10 days, SPS H2, parasitic operation

Beam conditions: 80GeV @ High Rate

Aim: PowerPulsing tests using B field.

PowerPulsed events: 42 kEvents

Non-PowerPulsed events: 74 kEvents

Clock period: 400ns Time selection for triggered events:

0<EvTime<1.2us

Noise contamination ratio: 1%

Power pulsing cycle

kieffer@ipnl.in2p3.fr

Busv

22

Timing of power cycle in the data

Efficiency using Power Pulsing

found runing under power pulsing.

Active cooling in Si-W ECAL

Active cooling in Si-W ECAL

A bench test have been build at LPSC to develop active cooling.

CŌ

Calorimeter for

Active cooling in Si-W ECAL

09/05/11

kieffer@ipnl.in2p3.fr

Summary

Cooling issues:

- ✓ Power pulsing scheme validated in testbeam with SDHCAL prototype.
- ✓ Power pulsing also validated on testboard for all ROC chips.
- \checkmark Will be tested very soon for all other calorimeters prototypes.
- ✓ Cooling issues results are encouraging.

Calice prototypes' status:

- French Si-ECAL technological prototype under construction.
- > Analog HCAL : caracterised with Iron (tests with tungsten ongoing).
- SDHCAL under construction: testbeam scheduled June 2011
- DHCAL currently in testbeam at FNAL, together with the small Si-W ECAL prototype.

Backup slides

ASIC Threshold_0 (DAC=140 Gain=128)

Suspecting threshold stability, we injected charges with different delays from Power-ON edge. Efficiency is quite constant during the 2ms power cycle. Work is still ongoing to understand efficiency loss recorded on beam data.

Preliminary tests using B field CALCE

09/05

Preliminary tests using B field

36

Preliminary tests using B field CALCE

