DCDC converters for the upgrade of the LHC experiments

F.Faccio, S.Michelis, G.Blanchot, C.Fuentes, B.Allongue - CERN/PH dept.

http://cern.ch/project-dcdc

Motivation for the development of radiation and magnetic field tolerant DCDC converters

What are the components of a full DCDC converter? Do we have them all by now?

In summary, what can a DCDC converter bring to a detector system

Conceptual representation of the power distribution system typically used in the LHC experiments

Power loss in cables: PLoss=Rcable I²

Power loss in cables: PLoss=Rcable I²

The electronics load (the FE boards) needs power at a precise voltage $P_{Load}=V_{Load}I_{Load}$

Power loss in cables: PLoss=Rcable I2

The electronics load (the FE boards) needs power at a precise voltage $P_{Load}=V_{Load}I_{Load}$

$$P_{in}=V_{in}I_{cable} \longrightarrow iConv \longrightarrow P_{out}=V_{Load}I_{Load}$$

iConv is magic because Pin=Pout Therefore if Vin>VLoad, Icable>ILoad

Waiting for the iConv, a DCDC converter can do the job with the drawback of some power loss

Waiting for the iConv, a DCDC converter can do the job with the drawback of some power loss

... but some 'magic' is still required: the DCDC needs to function in the radiation and magnetic field of the experiments

Figure 3: Topology of the two phase interleaved buck with integral voltage divider

Figure 2: Topology of the 4-phase interleaved buck converter

Figure 4: Topology of a multi-resonant buck converter

Ferromagnetic core Air core Vout Vin Mload control \Diamond

Qualification required for radiation effects: TID, displacement damage, SEEs

Electrical specs

Input voltage	10-12V
Output voltage	1.2-3.3V
Output current	up to 3A*
Efficiency	>80% (for V _{out} =2.5V)

Conducted and radiated noise compatible with installation in close proximity to FE electronics and detectors

Mechanical specs

Small size (footprint, height)

Small contribution to material budget

Connectable to cooling system

Environmental specs

TID tolerance	250 Mrad		
Displacement damage	2.5·10¹⁵ n/cm² (1MeV equivalent)		
SEE	Absence of destructive SEEs and Vout transients when tested with heavy ions up to an LET of 30 MeVcm²mg-1		
Magnetic field	4 T		
Temperature of cooling pad	-30 to +10 °C		

^{*} We will know the real output current limit soon, with measurements of a mature ASIC in a realistic configuration (cooling)

Motivation for the development of radiation and magnetic field tolerant DCDC converters

What are the components of a full DCDC converter? Do we have them all by now?

In summary, what can a DCDC converter bring to a detector system

Example prototype of a full DCDC

Steps for ASIC design:

- 1. pre-selection of CMOS technology
- 2. design of ASIC prototypes
- 3. verify electrical and radiation performance on ASIC prototypes

	AMIS2	IHP1	IHP2	AMIS4
Full control loop	✓	✓	✓	1
Dead times' handling	Fixed	Adaptive (QSW)	Adaptive (QSW and CCM, sharp transition)	Adaptive (QSW and CCM, smooth transition)
On-chip regulator(s)	No	No	√	1
Soft Start	Simple RC	Simple RC with comparators	Full sequence with comparators	State machine
Over-I protection	No	No	✓	✓
Over-T protection	No	No	No	1
Under-V disable	No	No	No	1

Used in system tests

Steps for ASIC design:

- 1. pre-selection of CMOS technology
- 2. design of ASIC prototypes
- 3. verify electrical and radiation performance on ASIC prototypes

	AMIS2	IHP1	IHP2	AMIS4
Full control loop	✓	✓	✓	✓
Dead times' handling	Fixed	Adaptive (QSW)	Adaptive (QSW and CCM, sharp transition)	Adaptive (QSW and CCM, smooth transition)
On-chip regulator(s)	No	No	√	✓
Soft Start	Simple RC	Simple RC with comparators	Full sequence with comparators	State machine
Over-I protection	No	No	√	√
Over-T protection	No	No	No	√
Under-V disable	No	No	No	√

Packaged in QFN32

Used in system tests

Tape-out Jan2011 Expected early summer

Solenoid

Toroid

Coilcraft design

L=220 nH ESR=30m Ω

Component selection and placement

Different constructions and thickness (t)

Painted Shield t = ?

Tape Shield t = 35 µm

Coated Shield 10 < t < 100 µm

This prototype uses the AMIS2 ASIC (rad tolerant)

Measured output noise (current) for Vin=10V, Vout=2.5V, Iout=2A. Note that 0 dB μ A = 1 μ A

Test with FEE Hcal CMS

Test with Frame Module ATLAS SCT prototype (Liverpool)

Hybrid	Linear regulator [ENC]	DCDC STV10 [ENC]
62	570	588
	596	605
61	585	589
	591	599

Motivation for the development of radiation and magnetic field tolerant DCDC converters

What are the components of a full DCDC converter? Do we have them all by now?

In summary, what can a DCDC converter bring to a detector system

The use of DCDC converters on-detector enables power distribution at higher voltage, hence lower current in the cables

It also adds local voltage regulation

With its high efficiency, it is far superior to a linear regulator for the above purpose (large conversion ratio)

A power distribution system with DCDC converters can be build modular, which allows for progressive and selective turn-on and -off of portions. It can also be built using cascaded conversion stages for higher efficiency.

Additionally, different load voltages can be locally generated from a unique power bus

FE board or portion of a system

CMS pixels upgrade phase 1

- The full distribution scheme (with ideal PS) is studied, using the best available estimates
- The case studied below is an unreal worst-case configuration

Power-on & power-off of full PS channel

Voltage ramp from the PS (rise & fall time 2ms) to turn-on and -off all 6 converters loaded with an equivalent 1A current

Conclusion

- DCDC converters are required for the upgrade of the LHC experiments, already at phase1
- They enable power distribution at higher voltage, decreasing the current on the cables. A modular distribution system can be designed, facilitating partitioning of domains from an individual supply bus
- The development of full DCDC converters satisfying the requirements of the LHC experiments is well advanced. With the availability of more mature ASICs, in a few months, all the basic elements and required skills will be available (as far as we can judge now)