

ROC ASICS: POWER ISSUES

It is gonna heat, hopefully, there is the power pulsing

ROC chips

- Silicon Germanium 0.35 µm BiCMOS technology
- Readout for MaPMT and SiPM for ILC calorimeters and other applications

()mega

- Very high level of integration : System on Chip (SoC)
- Start of **3D integrated 130nm** electronics for sLHC pixels in 2008
- Start of design for spatial applications (EUSO) in 2009
- Web site: http://omega.in2p3.fr/

ROC chips for ILC prototypes

SPIROC2 Analog HCAL (AHCAL) (SiPM) 36 ch. 32mm² June 07, June 08, March 10

HARDROC2 or MICROROC Digital HCAL (DHCAL) (RPC or µmegas) 64 ch. 16mm²

HR: Sept 06, June 08, March 10 Microroc: June 10

SKIROC2 ECAL (Si PIN diode) 64 ch. 70mm² March 10

- ROC chips for **technological prototypes**: to study the feasibility of large scale, industrializable modules (CALICE, Eudet/Aida funded, DHCAL ANR) AIDA
- Requirements for electronics
 - Large dynamic range (15 bits)
 - Auto-trigger on 1/2 MIP
 - On chip zero suppress
 - Front-end embedded in detector
 - Ultra-low power : 25µW/ch
 - 10⁸ channels
 - Compactness
 - Tracker electronics with calorimetric performance »

No chip = no detector !!

64 inputs

- Current preamp with 8 bits gain correct: G=0 to 255 (analog G=0 to 2)
- **3 shapers**, variable Rf,Cf and gains:
 Fsb1, G= ½,1/4,1/8,1/16
 Fsb2, G= 1/8,1/16,1/32,1/64
- 3 discriminators
 - 3 10 bit-DACs to set the thresholds (100fC, 1pC, 10pC)
 - Encoded in 2 bits
- Auto-trigger down to 10fC up to10pC
- Store all channels and BCID for every hit in a 127 bit deep digital memory
 - Data format : 127(depth)*[2bit*64ch+24bit(BCID) +8bit(Header)] = 20 kbits
- 872 SC registers, default config
 Mask of bad channels
- □ Full power pulsing: < 10µW/ch
- 10 000 chips produced to equip 400 000 ch of the technological prototype (ANR DHCAL)
- □ collab. LLR, IPNL, LAPP

mega

Power Pulsing Workshop

10 May 2011

HaRDROC : DHCAL integration issues

- 1 cm2 Pads, 50 Millions of channels
- 1 m2 = 6 ASU (Boards) X 24 Hardroc2 = 10 000 channels/ m2
- □ Few external components
- Power < 1mW/ch when running continously, 10 µW/ch with a 0.5% duty cycle

Each sensitive cassette contain a readout board stick to a GRPC.

SPIROC : ILC AHCAL readout

- SPIROC : Silicon Photomultiplier Integrated Readout Chip
 - Silicon PM detector G=10⁵-10⁶
 - 36 channels
 - Internal 12 bit ADC/TDC
 - Charge measurement (0-300 pC)
 - Time measurement (< 1 ns)
 - Autotrigger on MIP or spe (150 fC)
 - Sparsified readout compatible with EUDET 2nd generation DAQ
 - Pulsed power: 25 µW/ch

mega

(0.36m)² Tiles + SiPM + SPIROC (144ch)

Power Pulsing Workshop

10 May 2011

SPIROC main features

- Internal input 8-bit DAC (0-5V) for individual SiPM gain adjustment
- Energy measurement : 14 bits
 - 2 gains (1-10) + 12 bit ADC: 1 pe \rightarrow 2000 pe
 - Variable shaping time from 50ns to 100ns
 - pe/noise ratio : 11
- Auto-trigger on 1/3 pe (50fC)
 - pe/noise ratio on trigger channel : 24
 - Fast shaper : ~10ns
 - Auto-Trigger on 1/2 pe
- Time measurement :
 - 12-bit Bunch Crossing ID
 - 12 bit TDC step~100 ps

- Low consumption : ~25µW per channel (in power pulsing mode)
- Individually addressable calibration injection capacitance
- Embedded bandgap for voltage references
- Embedded 10 bit DAC for trigger threshold and gain selection
- Multiplexed analog output for physics prototype DAQ
- 4k internal memory and Daisy chain readout

neaa

SPIROC : One channel schematic

10 May 2011

SPIROC2B: Input DAC

mega

- Input DAC to optimize SiPM bias voltage
- 8-bit DAC, 5V range, LSB=20mV
- 36 DAC (one per channel)
- Ultra low power (<1µW) : no power pulsing
- Can sink 10 µA leakage current
- Linearity : ± 1%
- DAC uniformity between the 36 channels : ~3%

Residuals (V)

10 May 2011

10 May 2011

AHCAL: Technological prototype

- SiPM detector: 40 layers of 1.5 m² 2c thick steel plates interleaved with cassettes of 296 scintillating tiles (3xcm²) readout by SiPMs
- 8 Millions of channels •
- Few external components
- FE Chip embedded inside the detecto
 - Thickness:critical issue: Mother boards (HBU) are sandwiched between 2 absorber plates

Power: (25+15)µW / channel Mephy SiPM

@Peter Goetlicher's talk

SiPM

Tile

3mm

Bolt with inner

welded to bottom

M3 thread

plate

Absorber

Plates

(steel)

Power Pulsing Workshop

(4.9mm without covers => absorber)

Bottom Plate

600*µ*m

Component Area:

900µm high

HBU height:

6.1mm

10 May 2011

SKIROC2

- 64 channels to readout Si pin diodes of the Si-W ECAL
 - □ Autotrigger on MIP (4 fC)
 - Is the second second
 - 1 memory of 4K bytes to handle Charge and Time measurements from the internal ADC
 - □ Internal 12 bit ADC/TDC
 - □ Pulsed power: **25 µW/ch** (1 % duty cycle)

10 May 2011

Power Pulsing Workshop

<u>()mega</u>

ECAL module: integration issues

- Front-end ASICs embedded in detector
 - Very high level of integration (100 Millions Channels
 - Ultra-low power: pulsed mode and Digitization & onchip processing
 - Target 0.35 µm SiGe technology
- All communications via edges
 - 8,000 ch/slab, minimal room, access, power
 - small data volume (~ few 100 kbyte/s/slab)
- « Stitchable motherboards »
- No external component
 - Digital activity with sensistive analog front-end

10 May 2011

□ High granularity of the calorimeters => huge number of electronic channels DHCAL: 50M channels

A few external components

1 m2:144 chips x 64 ch ~ 10 000 Ch.

See Robert Kiefer's talk

Chips and bonded wires

inside the PCB

Heat shield: 100+400 μm (copper) PCB: **1200μm**

Kapton [®]film:

100 µm

()mega

Chips directly bonded

0 external components

glue: 100µm

wafer: 325 µm

Compactness and reduction of cracks (cables) => readout electronics embedded in the detector, a few external components possible for AHCAL and SDHCAL but NO external components for the ECAL

⇒ MINIMISATION OF THE POWER:

DAISY CHAIN READOUT and POWER PULSING taking into account the future duty cycle of the ILC beam

10 May 2011

10 May 2011

DAISY CHAIN: only 6 signals

COMMON to all the ROC chips

- StartAcq
 - □ Start acquisition, generated by DAQ

StartReadout:

Generated by DAQ, start of the readout

EndReadout

 $\hfill\square$ Generated by chip, End of the readout

ChipSat (Open Collector signal):

- □ Generated by chip, « 1 »: digital memory is full or acq finished
- Dout: data out (OC signal)
- TransmitOn (OC signal)
 Generated by chip, Data out are transmitted

Buffers integrated for OC signals

Power Pulsing Workshop

10 May 2011

INTERFACE DAQ-ROC= DIF board

- Reception of the Slow Control parameters from a PC and transmission to the ASICs, launch acquisition, perform analog/digital readout and send all the data received from ASICs to a PC.
- Communication
 - with other DIFs
 - with DAQ either by USB or by HDMI
- The DIF should be able to handle more than 100 ASICs theoretically. The max which has been tested is 48
- Regulators + Decoupling capacitors located on the DIF

ILC ROC CHIPs: POWER PULSING

Power pulsing lines timing

ower pulsing lines timing				mega
ACQ	CONV.	IDLE	READOUT	
PWR_ON_A (DAQ)				
PWR_ON_DAC (DAQ)			
PWR_ON_D (DAQ)				
	PWR_ON_ADC (DAQ)			
			PWR_ON_D_Internal (POD)	

CONVERSION:

HARDROC2: NO conversion SPIROC2: max time (Full chip)= 16 SCAx 2 (HG or LG/Time) x103 µs=3.2ms SKIROC2: max time (Full chip)= 15 SCA x2 (HG or LG/Time) x103 µs= 3 ms

READOUT:

HARDROC2: 127 (memory depth)x [64 channelsx 2 trigger bits + 24 BCID bits + 8 Header bits]=20 320 bits => 200 nsx20k=4 ms/ Full Chip (WORST case) SPIROC2: 16 SCAx2 (HG or LG/Time) x 36 ch x 16 ADC bits + 16 SCAx16 BCID bits + 16 Header bits= 18 704 bits => 3.8 ms/Full Chip (Worst case) SKIROC2: 15 SCAx2 (HG or LG/Time) x 64 ch x 16 ADC bits + 15 SCAx16 BCID bits + 16 Header bits= 30 976 bits => 6 ms/Full Fhip (Worst case)

10 May 2011

- □ POD module ("Clock-gating") to handle for the 2 LVDS receivers clock (40 MHz and 5 Mhz) and save power:
 - □ Starts and stops the Clocks, switches OFF LVDS receivers bias currents

2 others LVDS receivers (RazChn/NoTrig and ValEvt) active during PowerOnAnalog (during bunch crossing)

mega

Power On Digital Sequence

- End of Conversion: clocks stopped as not needed and LVDS receivers bias switched OFF
- **Readout**: Start ReadOut signal generated by the POD and stands for a PwrOnD => starts LVDS receivers and Clk.
- End of the ReadOut: The chip generates a EndRout signal which will be used by the next chip in the daisy chain to be read out.

Power Pulsing Workshop

mega

POWER PULSING: HARDROC example

Requirement:

Ibias cell

€

Shut down bias currents with vdd always ON

HR2	ON		
Vdd_pa	5.5 mA		
Vdd_fsbx3	12.3 mA		
Vdd_d0,1,2	7.3 mA		
Vdd_bandgap	1.2 mA		
Vdd_dac	0.84 mA		
Vddd	0.67 mA		
vddd2	0.4mA (=0 if 40MHz OFF)		
vddd2	0.4mA (=0 if 40MHz OFF)		
vddd2 Total (noPP)	0.4mA (=0 if 40MHz OFF) 29 mA		

ON_cell

OFF cell +

gnd

- HR2 power consumption measurement:
 - □ 29 mA x 3.3V \approx 100 mW => 1.5 mW/ch
 - \Box 7.5 μ W/ch with 0.5% duty cycle

Pwr_on_a alone	26.5mA
Pwr_on_dac	1.0 mA
Pwr_on_d	1.0 mA
ALL OFF	<4µA

vdd

Master Ibias

ibi cell 🕨

Master source

V OFF cell

≤ (external)

POWER PULSING: « AWAKE TIME »

Power pulsing of the 10 bit-DAC: 25 µs (slew rate limited)

()mega

10 May 2011

SDHCAL: POWER PULSING in TESTBEAM

See Robert Kiefer's talk

1 m² PADs 1x1 cm²

1 m² associated to GRPC detector in test beam

Semi-digital electronics readout system validated in beam conditions (daisy chain, stability, efficiency, no external component)

Power pulsing was successfully tested on a 24-ASIC electronic board. The board associated to a GRPC was also successfully tested in a 3-Tesla B field in June (SPS-H2)

Readout frame: Header (8bits), then BCID (24bits), then 128 bits for trig0<0-63> and trig1<0-63> 10 May 2011

ILC ROC CHIPS: POWER and DECOUPL

- DHCAL: 7.5 μ W/ch => 2.5 μ A/ch => <>=25 mA/m2 (10 000 channels/m2)
- \Box 2AA battery: 1500 mAh => 60 hours
- □ I peak=5 A during 1 ms acquisition => need of energy storage, $\Delta V=1V$ (regulators) => C=Idt/dV =5 mF, on the DIF.
- DHCAL/AHCAL 100 nF (for HF decoupling) possible near the chip, ECAL: 0 external components => decoupling C at the edges (DIF board)
- Decoupling vdd/gnd on PCB= About 20 pF/cm2 ie 20 nF/1m2

OMEGAPIX: 3D ATLAS pixels at SLHC

- Double tier pixel readout for ATLAS sLHC
 - 50x50 µm pixels, 64x24 readout channels:
 - Low power 3 µW/ch, low threshold 1000e-=0.160 fC
 - Target Cd = 100 fF, Pd= 3μ W, Gain : 50 mV/1000 e-, ENC=100 e-
 - Analog tier: preamp, shaper, discri
 - Digital tier: shift register with a read logic in each ch
 - decrease of digital activity by handling the digital data after Level 1 trigger (dynamic memory)
 - Chartered (130 nM CMOS)/Tezzaron run may 2009
 - Collab with CPPM and LPNHE

10 May 2011

	FEI4	LAL
Pixel size	50 x 250	50 x 50
Pixel capacitance	250 fF	80 fF
Array size	64 x 320	
DC leakage tolerance	100 nA	10 nA
noise	300 e-	100 e-
Threshold	2000 e-	1000 e-
Threshold dispersion	100 e-	100 e-
Power dissipation (analog)	12 µW/ch	2 µW/ch
Power dissipation (digital)	12 µW/ch	1 µW/ch
Max trigger rate	200 kHz	
Radiation tolerance	200 Mrad	
Charge measurement	4 bits	

JEM/EUSO : SPACIROC ASIC

Analog part:

- 1. Photoelectron counting @100MHz (implemented LAL)
- 2. Time Over Threshold (collab. JAXA/Riken)

Digital part (LAL):

- 1. Digitization,
- 2. Memory,
- 3. Send data to FPGA for triggering

Crucial points

- Power consumption < 1 mW/ch
- data flow ~ 384 bits / 2.5 μs
- Radiation tolerance

()mega

1- Silicon Germanium 0.35 µm BiCMOS

technology => High speed and low power

2- Digital processing inside the chip

Specifications:

- Consumption: 1mW/channel
- Photon counting: 100% trigger efficiency@50fC (1/3pe, 10⁶)
- Gain)
- >KI input range : 2pc 200pc (??10pe 100pe)
- Radiation hardness
- Data out : Startbit + 64 bits + Parity

<u>()mega</u>

Power Pulsing Workshop

10 May 2011

CONCLUSION

- \Box LOW power = key issue for ILC design
 - Power pulsing integrated at chip level
 Now been demonstrated at detector level with the DHCAL (No ADC)
 Will be more difficult with Spiroc and Skiroc : 12 bits ADC

□ Next generation of ROC chips: channel handled individually, 0 suppression

❑ When power pulsing is not possible:

- □ Low power at the design level
- Silicon Germanium technology
- Digital processing inside the chip

()mega

Backup slides

10 May 2011

ILC ROC CHIPs: POWER PULSING

<u>(mega</u>

Calorimeter	Sensitive Medium	Absorber	Granularity	Number of Channels	Readout Chip	Consumption (PowerPulsed)
Si-W ECAL (ILD oriented)	Silicon Diodes	Tungsten	0.5x0.5 cm ²	≈100M	SKIROC	25µW/ch Tot: ≈2500W
Si-W ECAL (SiD oriented)	Silicon Diodes	Tungsten	0.13 cm ²	≈73M	КРіХ	<20µW/ch Tot: <1460W
Scint-W ECAL (ILD oriented)	Scin. Tiles + SiPM	Tungsten	0.5 x 4.5 cm ²	≈11M	SPIROC	(25+7)µW/ch Tot: ≈352W
AHCAL	Scin. Tiles + SiPM	Iron	3x3 cm ²	≈8M	SPIROC	(25+15)µW/ch Tot: ≈320W
SDHCAL (ILD oriented)	GRPC or μMegas	Iron	1x1 cm ²	≈50M	HARDROC	7.5µW/ch Tot: ≈375W
DHCAL	GRPC	Iron	1x1 cm ²	≈50M	DCAL III	<4 mW/ch No Pow. Puls.
	(∂ Robert K	ieffer			Tot: <20kW

ROC chips for ILC = System On Chip Omega

- HARDROC/MICROROC for SDHCAL: 64 channels to readout RPC or µmegas)
 - □ Auto trigger on 10fC (2fC) up to 10 pC (500fC),
 - Semi digital readout (3 thresholds, 2bits-encoding)
 - □ 5 0.5 Kbytes memories to store 127 events
 - □ Pulsed power: **10 µW/ch** (0.5 % duty cycle)

□ SPIROC for AHCAL: 36 channels to readout SiPM

- □ Autotrigger on MIP or spe (150 fC)
- I6 depth SCA for Charge measurement (up to 300 pC) and Time measurement (< 1 ns)</p>
- 2 memories of 2K bytes to handle Charge and Time measurements from the internal ADC
- □ Internal 12 bit ADC/TDC

Physics simulation: 2 or 3 SCA are enough

SKIROC for ECAL: 64 channels to readout Si-W

 \Box Pulsed power: **25 \muW/ch** (1 % duty cycle)

- □ Autotrigger on MIP (4 fC)
- □ 15 depth SCA for Charge measurement (2500 Mip=10 pC) and Time measurement (< 1 ns)
- 1 memory of 4K bytes to handle Charge and Time measurements from the internal ADC
- □ Internal 12 bit ADC/TDC
- □ Pulsed power: **25 µW/ch** (1 % duty cycle)

MEMORY MAPPING of the ROC CHIPs

- HARDROC2: 127 events on 2 bits for 64 channels. Maximum of stored data is 20320 bits
 - No conversion
 - Readout worst case: 200 nsx20k=4 ms/ Full Chip (WORST case)
- SPIROC2: 16 events, 36 channels. 12 bits ADC for time and charge => max stored data = 18707 bits
 - Conv.: max time (Full chip)= 16 SCA x 2 (HG or LG/Time) x103 µs=3.2ms
 - RO: 3.8 ms/Full Chip (Worst case)
- SKIROC2: 15 events, 64 channels. 12 bits ADC for time and charge => max stored data= 30976 bits
 - Conv.: max time (Full chip) = 15 SCA x2 (HG or LG/Time) x103 µs = 3 ³⁶ Charges
 - ReadOut: 6 ms/Full Fhip (Worst case)

10 May 2011

Power Pulsing Workshop

36

Charge measure Chn 35 (12 bit)

Charge measure Chn 0 (12 bit)

Time measure Chn 35 (12 bit)

1168

SCA

Column 15

0 0 G H

0 0 G H

0 0 G H

mega

Doutb and TransmitON: Redundancy and bypass of the OC lines

- 2 data line/chip (Dout1b and Dout2b), chosen via SC
- 2 TransmitOn lines /chip
- Each one is removable from bus line by SC

Allow to remove one buffer that stick the bus line

StartReadOut and EndReadOut: redundancy and bypass

• Add bypass for these 2 signals (SRO, ERO \rightarrow SRO-B, ERO-B).

In red, StartReadOut and EndReadOut flow if chip "N" fails

• Chip N can bypass itself by SC

Chip "N-1" and chip "N+1" can bypass chip "N" by SC

If Chip N fails :

□ Chip N-1 sends EndReadOut signal on EndReadOutBypass

□ Chip N+1 reads StartReadOut signal on StartReadOutBypass

Slow Control: bypass

• Add bypass jumpers on PCB

In red, SC flow if chip "N" fails

- Default position is chip "N" reads chip "N-1"
 - If Chip N fails :
 - □ Switch N removed
 - □ Switch N+1 \rightarrow in position to read chip "N-1"