Study of Higgs Selfcouplings at ILC

J. Tian (Tsinghua U.)
Y. Takubo (Tohuko U.)
K. Fujii (KEK)
Y. Gao (Tsinghua U.)

status of ZHH full simulation

- succeeded in running mokka and marlin on grid (Thanks Miyamoto-san), now about 1K CPUs can be used ---> 0.5M events/day
- samples with statistics of higher than 2 ab-1 for llcc, vvbb (~2M) are generated and analyzed. confirmed to have no contamination finally.
- new background llh (not included in previous llbb background) is checked. no contribution at ~ 2 ab-1.
- estimating the errors of expected signal and background events. not very stable, still have large fluctuation.

error of expected value

	no cuts	final cuts
generated	M 0	Μ
expected	N 0	N

Expected value:

Error of expected value:

$$N = \frac{N_0}{M_0} M$$
$$\delta N = \frac{N_0}{M_0} \delta M = \frac{N_0}{M_0} \sqrt{M} = \sqrt{\frac{N_0}{M_0}} \sqrt{N}$$
$$\frac{\delta N}{N} = \sqrt{\frac{N_0}{M_0}} \frac{1}{\overline{N}}$$

especially when N is small (our case), we have to improve the error by increasing M0 significantly:

 $\frac{\delta N}{N} = 10\%$ $N = 5 \rightarrow M_0 = 10N_0$

$e^+ + e^- \rightarrow ZHH \rightarrow (l\bar{l})(b\bar{b})(b\bar{b}) \rightarrow 2 \text{ leptons} + 4 \text{ bjets}$						
Polarization: (e-,e+)=(-0.8,0.3) $\int Ldt = 2ab^{-1}$						
					eebb	0.42
		signal	background	ackground	mmbb	0.36
		0			eebbbb	0.08
	N	6.4	6.5		mmbbbb	0.06
					eebbh	0.07
	Error of N	0.10	0.6		mmbbh	0.06

llqqh

0.10

				not very stable!		
	signal	background	Się	gnificance:	1.72σ> 1.65σ	
N	6.4	7.5			2.10σ> 1.98σ	
Error of N	0.10	0.6		eebb	0.37	
				mmbb	0.48	

eebb: 6.7 ab-1 ---> 9.4 ab-1

mmbb: 5.6 ab-1 ---> 11.0 ab-1

increase

	signal	background	significance	ery stable! e: 1.41σ> 1.29σ
N	5.0	7.8		1.72σ> 1.53σ
Error of N	0.15	0.9	bbbb	0.43
			tauvbbcs	0.77

one issue (gluon emission)

From Tim's talk @ LCWS07

whizard-1.40 used by LoI didn't include the gluon emission. higher version included it. need to estimate this affection.

next to do

- qqHH modes still need to be optimized, though still have no idea how to further improve the bbcsdu suppression.
- increase statistics as more as possible to make the result stable (~20 ab-1).
- estimate the gluon emission affection.
- give a more statistical reasonable accuracy of coupling.

backup

Combined result (preliminary) Polarization: (e1,e+)=(-0.8,0.3) $e^+ + e^- \rightarrow ZHH \ M(H) = 120 \text{GeV} \int Ldt = 2ab^{-1}$							
				significance			
Energy (GeV)	Modes	signal backgro		round	nd excess (I)	measurement (II)	
500	$ZHH ightarrow (lar{l})(bar{b})(bar{b})$	6.4		6	.5	2.1σ	1.7σ
500	$ZHH ightarrow (u ar{ u}) (b ar{b}) (b ar{b})$	5.0		6.0		1.7σ	1.4σ
500	$ZHH \to (q\bar{q})(b\bar{b})(b\bar{b})$	6.5	11.5	6.8	86	2.7σ	2.6σ
500	combined					4.6σ	(4.1σ)

accuracy for cross section: ~ 25% accuracy for self coupling: ~ 45% LoI: ~180% for cross section, ~90% assuming a better b tagging (500 fb-1)

Expected ZHH events and backgrounds

Bmax3+Bmax4

Bmax3+Bmax4

Bmax3+Bmax4 10