

Impact of reducing the beam height in the ILD integration

MDI/Integration meeting

- Motivations for these studies
- Present design
 - Reminder of last design (pillar and double support tube)
 - Opening scenario
 - Supporting feet design proposal:
 - Barrel
 - Endcap
- Toward a 8m beam height
 - Modifications for the barrel
 - Modification for the Endcaps
- Conclusions and comments

- The goal is to soon converge to a common solution between SiD and ILD
 - With or without a platform
- ILD prefers the platform solution for many reasons
- BUT beam height of each detector is different :
- 9m for ILD
 Around 8m for SiD ?
 At CERN workshop we discussed
 about having both detector on 2 platforms of with different height

First consequence

• For opening on beam, the platform must take all the width of the cavern (18m)

How it looks like?

From M. Oriunno @ SiD workshop 2010 after CERN workshop

→ It seems interesting to reduce the difference as much as possible

- Solution of double tube support for the forward region :
 - Inner tube fixed to the machine concrete on beam for QD0
 - Outer tube supported with pillar and tension rod

- Same as Lol : end cap in 3 parts
 - Inner endcap ring with muon chambers
 - Last endcap ring split in 2
- About 1m for accesing

- Dimension of airpads :
 - 500mm height
 - 1100mm diameter

MDI/Integration meeting

- Designed from H. Gerwing in 2009
 - 15% stability seems OK (to be checked)
 - I would rather think that we need have an horizontal insertion of the muon chambers ex

MDI/Integration meeting

- Why 8m ? = Challenging goal in order to
 - See all the problems when reducing beam height
 - Check if one unique beam height is possible
- Distance between yoke and floor would then be around 250mm.
- Modification to the barrel yoke feet
 - No huge change

First endcap ring

8m

- Not enough space for feet
 - Yoke design must change
 - Feet design is modified
 - Distance between feet is increased
 - Muons chamber must then be inserted horizontally

Split endcaps

- In the case we keep the split endcaps
 - Feet design is modified
 - Yoke design also modified
 - One airpad is integrated into the yoke for stability reason

Some additionnal pictures

Conclusions and comments

- Having a 8m beam height seems feasible in the present baseline
 - No changes on barrel yoke
 - Review endcap yoke design
 - Certainly accept horizontal insertion of the muons chambers
 - Review opening scenario on IP
 - Any comments?
- Some general comments on the integration :
 - Pillar dimensions is defined by the cryoline + cryobox
 - Possible to reduce the length by putting the box outside the platform
 - Is that split endcap easy to handle?
 - Need 2 different movements
 - If we want to avoid these split endcaps, how to recover the beam access?
 - Reduce the pillar length to the minimum (about 200mm)
 - Reduce the yoke size
 - Is it possible to relax the fringe fields constraints?
 - Use this famous endcap coils as CLIC?