

Dark matter search in higgs portal scenario

Tohoku Takahiro Honda 2/18

status

- Higgs-dark matter coupling has been checked by dark matter mass 10,20,30,40,50,70,80,90,100 GeV
- but , the plots around 60GeV were inadequate. So check it.
 - The physics changes at 60GeV which is half mass of higgs.

Simulation setup

Higgs mass :120GeV

Dark matter type : scalar, fermion, vector

Dark matter mass :

10, 20, 30, 40, 50, 59, 61, 70, 80, 90, 100GeV

Center mass energy: 300GeV

Beam polarization:

electron:+80% positron:-30%

Integrated luminosity : 2ab-1

ILC upper limit

Compare ILC upper limit and wmap constraint

summary

- The points 59 and 61 GeV were checked. So far, my analysis is all.
- I'd like to start making the paper about this. However, I have to prepare for new job and do not have enough time for making the paper. So I think, making the paper is taken over by Saito kun.

background

Bkg has 2jets final state

	Cross section (fb)
ννΖ	10
ZZ	830
WW	2386
evW	1088
eeZ	4803

Event select 2

eeZ, evW ; electron -> beam pipe direction

Forward detector region : $0.98 < \cos\theta_{e} < 0.9999875$

Event select 3 Likelihood analysis

Define: $L = \frac{L}{L_{signal} + L_{backgraund}}$ L_{signal}

Input parameter

Angular info of Z Z mass Jet angle at Z rest frame

<Out put information>

Select L > 0.8

Reduction table

Signal region : 105 < recoil mass < 150 GeV

	No cut	Enent select 1	Event select 2	Event select 3
Siganl	16,583	16,398	16346	12,532
ννΖ	2,807	2,762	2,747	1,242
ZZ	198,561	190,119	188,640	77,440
WW	258,735	113,948	105,069	7957
evW	206,619	193,035	118,385	5203
eeZ	901,586	690,708	609,528	0

significance = 38.8

recoil mass fit function

Fit the recoil mass distribution of signal & bkg Fit region : 100< recoil mass < 200 GeV

Estimate the signal cross section

$$F = axF_{sig} + bxF_{sig}$$
 a and b are fit parameter

Upper limit of signal cross section (Procedure)

1. Fit the recoil mass distribution(only bkg event) and estimate the signal cross section

Upper limit of signal cross section

<estimation of signal σ >

Estimate the coupling upper limit about all type DM 14

summary

- Estimate higgs-dark matter coupling constant limit at ilc by quick simulation
 - all type dark matter case, dark matter can be detected at m_{DM} < m_h/2 region

In fermion and vector type dark matter case, if dark matter mass is about 70 GeV, ilc will detect it

constraint of higgs-DM coupling

Solving the Boltzmann equation -> Get the Y(∞) WMAP: Relic Abundance of Dark Matter

Compare the wmap constraint with ILC upper limit ¹⁶

ヒッグス-暗黒物質結合係数の上限値

設定した全ての場合のヒッグス-暗黒物質結合係数の上限値

質量が小さい領域では非常に小さい結合係数の値まで検証可能

質量(GeV)	スカラー(fb)	フェルミオン(fb)	ベクトル(fb)
10	0.00918	0.0000563	0.000133
20	0.00963	0.0000618	0.000555
30	0.00958	0.0000659	0.00134
40	0.0106	0.000868	0.00290
50	0.0125	0.000118	0.00520
70	0.724	0.00770	0.375
80	1.61	0.0158	0.855
90	3.57	0.0350	1.91
100	11.9	0.203	7.471

Recoil mass distribution

The recoil mass distribution with different mass

フィット 関数の作成2

暗黒物質の質量が70GeVの時 同様の解析を行いフィット関数を作成した

事象再構成

全ての事象を強制的に2ジェットとして再構成 Durham アルゴリズム

事象選択におけるシグナル領域 105 < 反跳質量 < 150GeV

はじめに

素粒子物理学における標準模型は 基礎的な物理事象を記述する模型として成功を収めた

しかし、ヒエラルキー問題が実在

ヒエラルキー問題を解決する為に標準模型を超える新物理が必要

ヒッグスの質量補正 → 新しい物理: O(1)TeVに存在 一方、 電弱相互作用の精密測定 → 新しい物理: 10TeV以上に存在

その解決のために様々なシナリオが提唱されている

21

ナイトメアシナリオ

リトルヒエラルキー問題を解決する為に

O(1)TeVに新物理が存在し、電弱スケールの物理への寄与を抑制 超対称模型やリトルヒッグス模型など

もう一方は、

○(10)TeVに新物理が存在し、ヒッグスの質量補正では微調整が必要 このシナリオでは○(10)TeVの質量を持つ新粒子が予言される ILC等の高エネルギー加速器実験で新物理のシグナル検出が困難に

これを「ナイトメアシナリオ」という

一方、WMAP観測等の結果から
 暗黒物質の質量はO(10~1000)GeVと見積もられている
 暗黒物質ならばILCでも検出可能か!

シグナル事象の生成

多くサンプリングされた位相空間の事象がより多く生成される

解析手順

1. 事象再構成

Zの運動学的物理量、 Zの反跳質量、レプトントラック等

- 2. バックグラウンド事象の除去
- 3. ヒッグス-暗黒物質結合係数の導出

本発表では

質量50GeVと70GeVのフェルミオンタイプについて述べる

バックグラウンド事象の除去

孤立レプトン

- レプトントラックのあるバックグラウンド事象の除去
- 孤立レプトン数 = 0

前方飛跡検出器ヒット

- ビーム軸に抜けていく事象を捉える
- evW, eeZバックグラウンド事象の除去

Zボソンの質量

- Zボソンが正しく再構成されたものを解析対象にする
- 83 < Zボソンの質量 < 100GeV
 尤度比
- 尤度比L > 0.8

フィット結果

<u>作成したフィット関数が有効であるかの確認</u>

シグナル反応断面積が15fbの時に1000回の試行実験を行い フィット関数を用いてシグナル反応断面積を求めた

50GeV:15.04±0.42 (15fb) フィット結果は真値と一致する 70GeV:15.29±0.43 (15fb) 26

<u>国際リニアコライダー(ILC)計画</u>

____主線形加速器

2 主線形加速器

ILD概念図

<加速器>

- 電子•陽電子衝突型線形加速器
- 全長 約30km
- ルミノシティ 500fb⁻¹ (4年間)
- 重心系エネルギー 500GeV

<測定器>

• 測定器案 ILD, SiD,4th

<u>本研究の動機</u>

新しい物理が10TeVに存在する場合
 新粒子は重くなる。

→ILCでは直接観測することができない

- ダークマターが新物理を解明する手掛かりとなる!
 ダークマターによる物理現象の変化
 - ・ヒッグスの崩壊幅のずれ

<本研究の目的>

ダークマターの検出も困難な模型でILCでのダークマターの検出 感度を検証する

- ヒッグス・ポータル模型

ee→WW :9024fb
 − WW→qql_V

• ee→ZZ : 515fb

$$-ZZ \rightarrow qqvv$$

$$e^{+} Z \rightarrow qqvv$$

$$e^{-} Z \rightarrow qqvv$$

<u>本研究の手順</u>

イベントジェネレーターの作成: Physsim
 測定器シミュレーション: ILD Quick-sim
 物理解析

 全ての事象を2ジェットとして再構成
 事象の選択
 Likelihood解析サンプルの選択
 Likelihood解析

イベントジェネレーターの作成

Physsimにシグナルイベントを加えた

<基本粒子の生成: Physsim>

ヘリシティ振幅の計算:HELAS

- 外線(始状態と終状態)の量子状態を指定
 4元運動量・質量・スピン
- 内線と頂点で、始状態と終状態をつなぐ

-相互作用にヒッグス・ダークマター結合を追加

検出器シミュレーション

シグナル事象を検出器シミュレーションの情報で再構成した

検出器でのシグナルの様子

Zが崩壊した2ジェットが見える
 ダークマターは見えない

140GeV(ダークマター質量の2倍)
 を境に分布

50 100 150 200 250 300 350 400 450 500

イベントジェネレーター作成に成功

解析条件

・ ダークマター – タイプ : スカラー – 質量 : 70 GeV		・ ヒッグス粒子 – 質量:120 GeV ・ 重心エネルギー – 500 GeV	
	ルミノシティ	反応断面積	生成した イベント数
シグナル	500fb ⁻¹	3fb	30000
ZZ	500fb ⁻¹	515fb	480000
WW	500fb ⁻¹	9024fb	1950000

-0.8 < cosθ < 0.8 の範囲を選択

35

再構成したZの質量を用いて事象選択した

<再構成したZの質量分布>

70GeV < Zエネルギー < 110GeVの範囲を選択した

<u>Likelihood用変数の選択:Zエネルギー</u>

再構成したZのエネルギー分布を比較した

<再構成したZのエネルギー分布>

<u>Likelihood解析</u>

Likelihoodの分布をシグナルと背景事象で比較

シグナルと背景事象がきれいに分離できている

まとめ

- ダークマターを発見することは新物理解明の手掛かりとなる。
- 本研究ではヒッグス・ポータル模型のスカラーダークマター
 について解析を行った。
- 本解析ではヒッグス事象の測定精度をクイック・シミュレーションで評価した。
- Likelihoodを用いた解析では、有意性が3以上となる最小の シグナル反応断面積は1.8fbとなった。

プラン

 フェルミオン、ベクトルタイプのダークマターについて解析を 進める。

タイプ別の質量欠損分布

