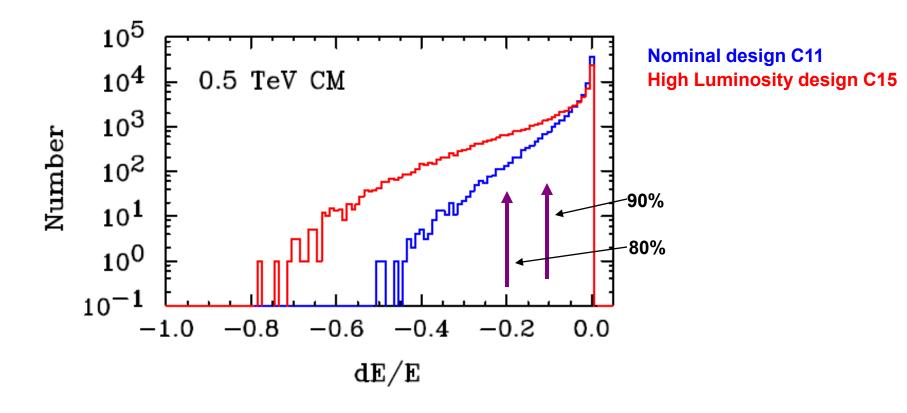
SR Update

M. Sullivan Mar. 10, 2011

Plan for talk

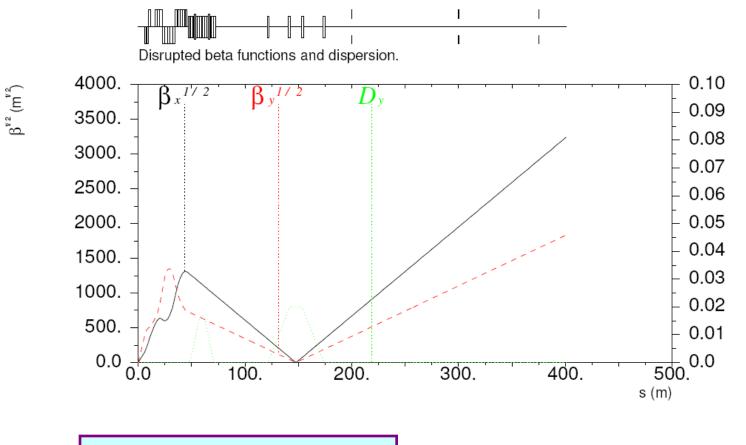
- Upstream SR
 - Nominal settings
 - Upstream SR backscattering from dump line apertures
 - Settings where SR starts to hit the detector chamber
- Downstream SR from the dump line
 - Model 3 different beam energies
 - 250 GeV (optics set to this value from the lattice)
 - 225 GeV (Above optics scaled to this energy 90% of nom.)
 - 200 GeV (Above optics scaled to this energy 80% of nom.)
 - Put these optics into SYNC_BKG (my version of QSRAD)
 - My version has the ability to track the beam using the lattice α and β functions
 - This allows me to start the beam at the IP and trace it out to the dump (300 m away)
 - Get rates for photons striking downstream surfaces
 - Compute backscatter rate to the detector beam pipe


IP parameters

							upgrade
Centre-of-mass energy	E_{cm}	GeV	200	250	350	500	1000
Beam energy	E _{beam}	GeV	100	125	175	250	500
Lorentz factor	γ		1.96E+05	2.45E+05	3.42E+05	4.89E+05	9.78E+05
Collision rate	f _{rep}	Hz	5	5	5	5	2
Electron linac rate	f linac	Hz	10	10	5	5	2
Number of bunches	n _b		1312	1312	1312	1312	2625
Electron bunch population	Ν.	×10 ¹⁰	2	2	2	2	2
Positron bunch population	N_+	×10 ¹⁰	2	2	2	2	2
 Bunch seperation	∆t _b	ns	740	740	740	740	356
Bunch seperation ≯ _{RF}	$\Delta t_b f_F$	۲.	962	962	962	962	463
Pulse current	I beam	mA	4.33	4.33	4.33	4.33	9.00
 RMS bunch length	σ_z	mm	0.3	0.3	0.3	0.3	0.3
Electron RMS energy spread	$\Delta p/p$	%	0.22	0.22	0.22	0.21	0.11
Positron RMS energy spread	$\Delta p/p$	%	0.17	0.14	0.10	0.07	0.04
Electron polarisation	Ρ.	%	80	80	80	80	80
Positron polarisation	P ₊	%	31	31	29	22	22
 Horizontal emittance (linac exit)	γεχ	μm	10	10	10	10	10
Vertical emittance (linac exit)	$\gamma \varepsilon_y$	nm	35	35	35	35	35
IP horizontal beta function	β_x^*	mm	16	12	15	11	3(
IP vertical beta function (no TF)	β_y^*	mm	0.48	0.48	0.48	0.48	0.30
 IP vertical beta function (TF)	β_y^*	mm	0.2	0.2	0.2	0.2	0.2

IP parameters

	IP RMS horizontal beam size	σ_x^*	nm	904	700	662	474	554	
	IP RMS veritcal beam size (no TF)	σ_y^*	nm	9.3	8.3	7.0	5.9	3.3	
	IP RMS veritcal beam size (TF)	σ_y^*	nm	6.0	5.3	4.5	3.8	2.7	
No TF	Horizontal distruption parameter	D_x		0.2	0.3	0.2	0.3	0.1	-
	Vertical disruption parameter	D_y		20.7	23.8	21.3	24.9	19.2	(
	Horizontal enhancement factor	H_{Dx}		1.1	1.1	1.1	1.2	1.0	1
	Vertical enhancement factor	H_{Dy}		5.7	6.0	5.8	6.1	3.6	i
	Total enhancement factor	H_D		1.8	1.9	1.8	2.0	1.5	
			24						<u> </u>
	Geometric luminosity	L geom	×10 ³⁴ cm ⁻² s ⁻¹	0.2	0.4	0.5	0.8	1.8	1
	Luminosity	L	×10 ³⁴ cm ⁻² s ⁻²	0.5	0.7	0.8	1.5	2.8	1
	Fraction of luminosity in top 1%	L _{0.01} /L	1		0.96	0.88	0.73		_
	Average beamstrahlung parameter	Yav		0.013	0.021	0.032	0.063	0.109	
	Maximum beamstrahlung parameter	Y_{max}		0.032	0.051	0.075	0.150	0.260	1
	Average number of photons / particl	nγ		0.96	1.22	1.28	1.74	1.46	i
	Average energy loss	$\delta E_{\rm BS}$	%	0.53	1.04	1.55	3.76	4.83	
	Number of pairs per bunch crossing	N _{pair}	×10 ³		97.4	214	494		
With TF	Luminosity	L	×10 ³⁴ cm ⁻² s ⁻²	0.5	0.8	1.0	2.0		┢
	Average energy loss	$\delta E_{\rm BS}$	%		0.6	1.6	3.6		
	Number of pairs per bunch crossing	N _{pair}	×10 ³		115	255	596		
	Fraction of luminosity in top 1%	L _{0.01} /L			0.89	0.77	0.72		


Energy distribution

Beam energy distribution going into the dump line

From SLAC-PUB-1159, Nosochkov, *et. al.*, "ILC Extraction Line for 14 mrad Crossing Angle", 2005

Beta functions

Dump Line beta functions

(m) (T

Beta functions from 2007 lattice

Magnet Apertures

Sync_bkg results

Further work

 Put actual energy distribution into program