

ILC CFS AND GLOBAL SYSTEMS MEETING

CONVENTIONAL FACILITIES AND SITING GROUP

e+ Source Review and EDMS – Daresbury, UK CERN IR Workshop – CERN, CH

V. Kuchler

E+ Source Review - Daresbury

- Overview Presentations for the e+ source were Presented and Discussed (E. Paterson and N. Collomb)
- CFS e+ Source Criteria was Reviewed and Prepared
 Questions were Discussed
- N. Collomb Provided a Comprehensive Status Report of Progress to Date of the e+ Design
- S. Riemann Provided a Very Detailed Technical Overview of the e+ Source but the Information Provided was Very Useful from the CFS Standpoint - Each Component of the e+ Source was Identified and will Help to Further the Requirements of the e+ Source with Respect to Underground Volume Requirements

il**C** international linear collider

POSITRON SOURCE DESIGN CRITERIA FOR CFS, for DARESBURY WORKSHOP FEB 10 & 11, 2011

DRAFT

FEBRUARY 7, 2011

Page 1

POSITRON SOURCE DESIGN CRITERIA FOR CFS, for DARESBURY WORKSHOP FEB 10 and 11, 2011

Juner	Jtilities Criteria	DRAFT FEB. 07, 2011			
		DATA*	NOTES		
1 Pov	ver Supply typical water pressure drop	?			
2 Pov	ver Supply typical water delta T	12-18°FdT (7-10°C DT)	placeholder		
3 Pov	ver Supplies maximum allowable temperatures	104°F (40°C)	placeholder		
4 Ma	gnet typical water pressure drop	100 PSID (placeholder)			
	gnet typical water delta T	per design. Max 40F dt	from RDR Magnet grou (2006)		
6 Ma	gnet maximum allowable temperatures	140°F (60°C)			
7 Dur	np typical water pressure drop	N/A	CFS not designing RAV		
B Dur	np typical water delta T	54°Fdt (30°C deltaT)	placeholder		
9 RF :	system typical water pressure drop	Use ML -RDR data	High Cost Impact		
10 RF :	system typical water delta T	Use ML -RDR data	High Cost Impact		
11 RF s	system maximum allowable temperatures	Use ML -RDR data	High Cost Impact		
2 Rac	ks system typical water pressure drop	assume air cooled	High Cost Impact		
	ks system typical water delta T	assume air cooled	High Cost Impact		
	ks system maximum allowable temperatures	7	High Cost Impact		
	x Space/Air Temperature in Beam Tunnel	no regmnt			
_	x Space/Air Temperature in ServiceTunnel	85°F (29.5°C)			
	x Space/Air Temperature in Service runner	85°F (29.5°C)			
	Temperature Stability in Beam Tunnel	no regmnt	Very High Cost Impact		
-	w Point Temperature	no regmnt	Very High Cost Impact		
_	ximum Relative Humidity (%)	no regmnt	very riigh coat impact		
_	imum Relative Humidity (%)	no regmit	Very High Cost Impact		
	cess Heat Load to Air	no requint	High Cost Impact		
	cess Heat Load to Air cess Load to CHW	See Heat/Power	High Cost Impact		
-	cess Load to LCW	Load Tables	High Cost Impact		
		no regmnt	High Cost impact		
	ntilation (Numer of Persons in space) ntilation (Cu M/Hr or ofm)	no regmnt			
_		no regmnt			
	ace Pressurization (Negative milliBars or inch W.C)		Manufactor Continuous		
	ace Pressurization Stabilization (+/- milliBar or inch W.C.)	no regmnt no regmnt	Very High Cost Impact		
	aft/Egress Pressurization (Positive milliBar or inch W.C.)		Very High Cost Impact		
	N Supply Temperature	65F (18C) or 95F(35C)			
-	W Supply Temperature Stability	no regmnt			
_	N delta T	18F(10C) or 40F(22C)DT			
	W Pipe vibration impact	no regmnt			
_	H Purge (Y/N - Cu M/ Hr if Y)	no regmnt	Very High Cost Impact		
	ivated Air Purge (Y/N - Cu M /Hr if Y)	no regmnt	Very High Cost Impact		
	W Cooling for Magnets & Power Supplies (Y/N)	Yes, per design			
-	ssicant Dehumidification	no regmnt	Very High Cost Impact		
	/ power quality reqmnt (clean / dirty power?)	no reqmnt	Very High Cost Impact		
_	n you maintain min power factor?	no regmnt			
	erating power characteristics KW, KVA, PF?	?	Very High Cost Impact		
	age Regulation/Optimum Utilization Voltage (480V? 208V? etc)	?	High Cost Impact		
_	tity (water system) interface	no reqmnt	header with valve		
_	tity (electrical) interface	no reqmnt	Panelboard		
	w stable are the positron heat loads? Constant w.r.t BDS?	very stable (placeholder)	Very High Cost Impac		
	ats the largest equipment in the service tunnel? & in transport?				
6 Per	netrations between service tunnel and beam tunnel?				
7 Will	the positron source consume power at same time as AUX source				
8 Will	we be developing reqmnt for remote handling of Target(s)				
9 Wh	at's the shaft for above the target pile?				
i0 ls s	hielding reqd above the target shaft?				
51 Wh	ats the relationshop od the injection from e+ to 3ring DR				

Page 2

<u>E+ Source Review – Daresbury</u> CFS Conclusions

- Current CFS Criteria will be Updated Based on the Information Gained During the e+ Source Review
- Due to Resource Constraints it is Unlikely that Further Criteria Development will be Forthcoming
- CFS will Proceed with a More Detailed Mechanical Design Effort Based on this Current Set of Criteria
- The Main Criteria Point that Still Remains Undefined is the Issue of Activated Air Control
- CFS will Develop Criteria Based on Existing Experimental Installations (NuMI, Mu2e) as A Placeholder for the TDR Design
- More Detailed Design of the e+ Source will Necessarily be Completed Post TDR

<u>CFS EDMS – Daresbury</u>

- CFS Presented a Draft WBS Proposal for the Organization
 of Files in the EDMS System
- This Proposal was Discussed and Divided Into that Portion that will be Included in the Overall ILC WBS Structure and the Portion that will be Used to Organize Contributions Within the CFS EDMS Area
- A Consensus was Reached that CFS Cost Information will Not be Posted Within the CFS EDMS Area - All TDR Cost Information will be Posted in a Separate EDMS Area by the ILC Costing Group
- e+ Source Criteria, Once Updated, will be the First Criteria to be Posted into the New WBS System
- As Further Area System Reviews are Completed, Criteria will be Finalized and Posted to the EDMS System

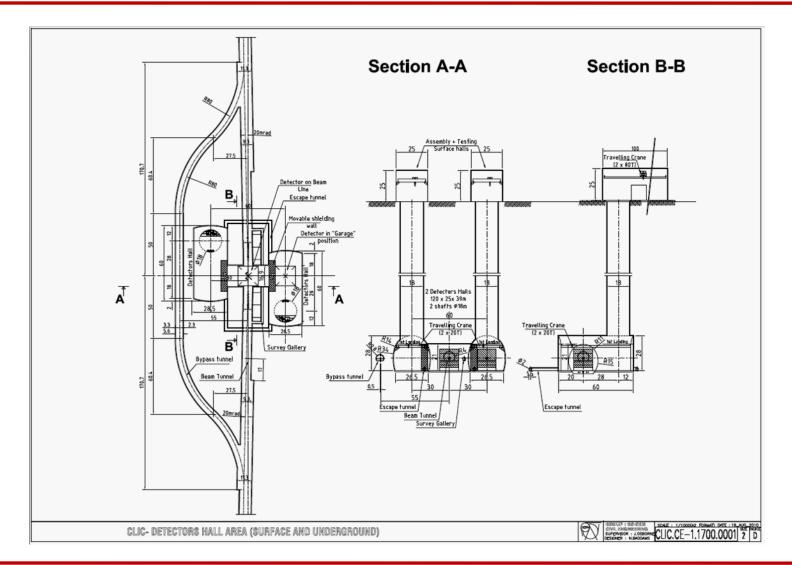
					DIVI3 313		ev. Draft 02.2			
ILC ED	MS Proje	ct								
1.X	ILC CFS									
1.X.1	CFS SUMMARY CRITERIA		1.X.2	CFS GENER	AL DESIGN		1.X.3	CFS REPORTS AND STUDIES		
	1X11	e- Sourc			1 2 2 1	Asian Re	rice		1731	Geotechnica
		e+ Source	-		1.0.2.1		Overall Desig	n and Siting		
		Damping	-			1.8.2.1.1		a and ording		Life Safety
	1.X.1.4						Interaction Re	aion		Miscellaneou
	1.X.1.5	Main Lin	ac				Mechanical			
		1.X.1.5.1	KCS			1.X.2.1.5	Electrical			
		1.X.1.5.2	DRFS			1.X.2.1.6	Safety System	IS		
	1.X.1.6	BDS								
	1.X.1.7	.7 Interaction Region		1.X.2.2	America	s Region				
	1.X.1.8	Dumps				1.X.2.2.1	Overall Desig	n and Siting		
	1.X.1.9	Overall M	rall Machine Parameter	neters		1.X.2.2.2	Civil			
						1.X.2.2.3	Interaction Re	gion		
						1.X.2.2.4	Mechanical			
						1.X.2.2.5	Electrical			
						1.X.2.2.6	Safety System	is		
					1.X.2.3	Europea	n Region			
						-	Overall Design and Siting			
						1.X.2.3.2		_		
						1.X.2.3.3	Interaction Re	gion		
							Mechanical	-		
						1.X.3.1.5	Electrical			
						1.X.3.1.6	Safety System	IS		

IR Workshop - CERN

- The Workshop was Devoted to Briefing ARUP UK Representatives (M. Sykes, S. Macklin, D. Hiller, A. Cunningham) with Work to Date on the CLIC Interaction Region Design, Detector Movement Strategies and LHC Detector Experience w/r/t Settlement and Vibration
- Presentation Topics
 - **Civil Engineering Works for Linear Colliders (J. Osborne)**
 - Assembling, Lowering and Moving a 14,000 Ton Experiment at CLIC (H. Gerwig)
 - Vibration Issues at Linear Colliders and Consequences for CLIC (A. Gaddi)
 - Reflections on Moving and Aligning Large Masses Around IP at CLIC (A. Herve)
 - CLIC/LHC Sub-Micron Ground Motion and Vibration Measurements (M. Guinchard)
 - **LHC Long Term Ground Movement Measurements (JC Gayde)**
 - ARUP Experience

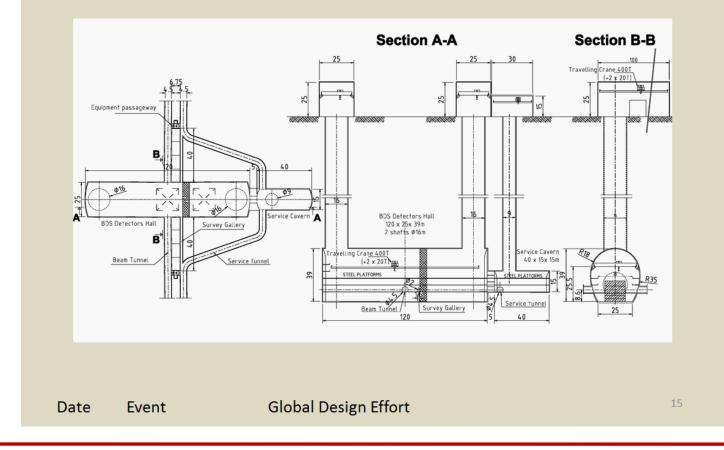
<u>IR Workshop – CERN</u> CFS Conclusions

- It is Clear that A Common Design for Both the ILC and CLIC Interaction Regions is not Possible Due to Differences In the ILC and CLIC Detector Designs
 - **CLIC Detectors, by Design, have the Same Vertical Dimension**
 - ILC Detectors have Different Vertical Dimensions
 - **CLIC Detector Movement Platforms will have the Same Depth**
 - **ILC Detector Movement Platforms will have Different Depths**
 - **CLIC FF Quads are Supported by the Main Linac Tunnel**
 - **ILC FF Quads are Supported by the Detectors**
- The European Region has Developed Both the ILC and CLIC Interaction Region Design
- These Criteria Need to be Finalized for the TDR at ALCPG11
- Both the Asian and Americas Region will Now Need to Devote Resources to the Development of Regional ILC Interaction Region Design Solutions
- Future ARUP Work TBD



IR Workshop – CERN

CFS Conclusions cont.


- Future ARUP Work TBD
- One Possibility to be Considered is a Model of the Underground Volume Configuration for the CLIC Solution w/r/t Rock Stress and Movement
- Once a Model is Developed, it Can be Adjusted for Different Criteria and Configurations
- ARUP Representatives Did Not See Any Particular Problem with Pouring Large Amounts of Concrete Underground

Global Design Effort - CFS

ILC IR Layout (CERN)

CFS Preparation for ALCPG11

- CFS Topics have been Established for Parallel Sessions
 - Main Linac/HLRF (KCS & DRFS)
 - MDI/Detectors
 - EDMS
 - **CFS Discussion of KCS Shaft Arrangement**
 - CFS Discussion of DRFS Civil Drivers
 - CFS Discussion of Regional/Global Cost Estimates for Specific WBS Sections
 - General TDR Planning
 - I Tev Upgrade issues
- Joint Sessions have been Established for CFS and Main Linac/HLRF WG and MDI/Detector WG (Unfortunately Both Other WG have Allotted the Same Time for the Joint Session with CFS
- The CFS Group will Split to Attend Both Parallel Sessions
- The CFS Group will Devote one Parallel Session to Finalize the EDMS WBS File Organization Format for the Duration of the TDR Process