Clustering-Based Two Particle Separation

Jörgen Samson

CALICE Analysis Meeting

28th Februrary 2011

Introduction
Pion Selection
Event Pairing *Trackwise* Clustering
Particle Separation
Summary

Jörgen Samson (CALICE Analysis Meeting) Clustering-Based Two Particle Separation

Introduction

- two particle separation is a key factor in the particle flow concept
- understanding the confusion term (i.e. wrong assignment of calorimeter energy to reconstructed particles) is needed to proof the particle flow concept working
- comprehensive two particle separation study based on test-beam data: combine two single particle events to one virtual two particle event
 - increases statistics of events with larger impact position distance
 - allows to study events with different particle energy
 - provides the true single particle response of the particles

くほと くほと くほと

Data Set

$\rm E_{beam}$ [GeV]	run numbers	number of events
6	300628 300629 300630 300631 300669	1.0 10 ⁶
8	300643 300647 300648 300652 300663	1.3 10 ⁶
10	300613 300618 300660 300667	1.4 10 ⁶
12	300644 300649 300653 300664	1.2 10 ⁶
15	300619 300659	0.7 10 ⁶
18	300645 300646 300650 300654 300665	$1.5 \ 10^{6}$
20	300620 300658	0.6 10 ⁶

- data taken October 2006 at CERN
- selected π^- runs
 - stable beam condition
 - stalbeambient temperature

3

(日) (周) (三) (三)

Pion Selection

Cuts to select AHCAL contained pions

- cuts with focus on high purity (for all impact positions)
- only one cut on AHCAL to avoid biased selection
 - event: beam is "on", no calibration, ...
 - trigger muon veto: 100×100 cm scintillator plate behind TCMT does not trigger (veto muons and punch through events)
 - *ECAL mip-like track*: require mip-like signal in 3×3 ECAL-cell tower; only noise in the rest of ECAL; be strict on noise in last layers
 - tcmt cuts: only noise in TCMT; be strict on first 4 TCMT layers
 - HCAL cut: require at least 30 hits in HCAL

Pion Selection "at work"

• total energy (ECAL+HCAL+TCMT): number of nuons gets reduced

Energy in ECAL: removes electron contamination and early starting showers

Jörgen Samson (CALICE Analysis Meeting)

Clustering-Based Two Particle Separation

Pion Selection

Pion Selection

• Energy in TCMT: remove showers leaking into TCMT

• Energy in HCAL: remove residual muons

Jörgen Samson (CALICE Analysis Meeting) Clustering-E

Clustering-Based Two Particle Separation

Pion Selection

HCAL cut

- removes muons scattered in HCAL (miss TCMT)
- strange events; might be fragments of showers upstream in beamline
- total number of "strange" events is low, but impact position tends to be at the edge of trigger acceptance (next slides)

Event Pairing

Event Pairing

beam profile and trigger acceptance limit impact position

events have to be "reused" to get statistics with "large" distance
mix event A with B is different to mix event A with C

Jörgen Samson (CALICE Analysis Meeting) Clustering-Based Two Particle Separation

3000

2500

2000

1500

100

Trackwise Clustering

Trackwise Clustering algorighm

- Trackwise searches from calorimeter surface to the back for clusters
- axis of found cluster seeds defines search direction
- additional hits might be added to cluster seed if "distance" is below threshold
- "distance" is combination of distance in forward direction and length of arc *d_ij*
- tunable parameters are values for "forward" and "arclength" distance to pick up new hits

Parameter Tuning

parameter scan to tune particle flow

- tune to find two clusters for two particle events
- values 25 "forward" and 92 for "arclenght" have been choosen (default values are 20 and 80)
- parameter get to large, clusters are connected
- if "forward" parameter gets to small, neighboured cells cannot be connected

10 / 17

Confusion (Definition)

overlaid events:

- single particle events: energy deposition/measurement of particles is known
- virtual two particle events:
 - do clustering (particle reconstruction)
 - assume true particle energy (here beam energy) is known for *one* particle; I will call this one "track"
 - match "track" to one cluster/reconstructed particle
 - sum up the energy of all clusters, that are not the "track" particle
- confusion:
 - per event: $E_{confusion} := E_{not track} E_{sp event}$
 - perfect particle separation: $E_{confusion} = 0$
 - worst case: $E_{confusion} := -E_{sp event}$

Confusion

example of two particle confusion term with $\ensuremath{\textit{trackwise clustering}}$

example of two particle confusion term with *PandoraPFA* (O. Markin paper draft)

- confusion shape characterises particle separation capability
- o different aspects:
 - e.g. bias if separation works
 - fraction of events with one reconstructed particle
- *particle flow* is more than clustering (forces consitency with track information)

Figures of Merit

- mean of confusion distribution: energy bias of hadrons next to "known" hadrons
- RMS/RMS90 of confusion distribution: confusion width as source of additional jet-energy error in "jet" particle flow
- fraction of hadrons reconstructed within $n\sigma$ of natural HCAL resolution: \approx "how often does pflow help"

Confusion Bias

mean of confusion distribution

two charged hadrons; trackwise clustering

10 GeV neutral hadron; PandoraPFA (O. Markin)

- PFA still has "limited" confusion bias at 0 distance
- confusion bias would drop to -E at 0 distance
- left: apply clustering to two charged hadrons
 - (possible) seed of all clusters "known" to clustering due to mip stub.
 - PFA has to "search" possible cluster position, but will search if track information inconsistent with clustering
 - might be a reason for smaller bias at 10 cm

Confusion Width

RMS90 of confusion distribution

two charged hadrons; trackwise clustering

(O. Markin)

- RMS90 / RMS as figure of merit for width (confusion distribution not Gaussian)
- RMS differ more than RMS90 between "clustering" and "PFA" due to different position of "secondary peak"

・ 何 ト ・ ヨ ト ・ ヨ ト

Good Reconstruction Efficiency

- small distance: part of "second peak" events for PFA within 2σ
- 10 cm: more accurate cluster finding due to second MIP-stub already compensates "lost" clusters

Summary

- particle flow algorithms are needed to recover from low particle separation efficiencies at small distances.
- mip-stub of charged hadron helps pure clustering algorithm to do what particle flow does on its own
- separation power of Pandora PFA and "MIP-stub-assisted" trackwise clustering seem to converge at \gtrsim 10cm, however, trackwise clustering data > 10cm missing to confirm assumption
- real particle flow is needed to handle small impact distances
- above distances of 10cm pflow optimised hardware can be exploited/pflow can be done
- at smaller distances pflow algo does more eflow than pflow
- this is needed for good jet energy resolution

- 3

- 4 同 6 4 日 6 4 日 6

Seaparation

< ロ > < 同 > < 三 > < 三

Jörgen Samson (CALICE Analysis Meeting) Clustering-Based Two Particle Separation

Separation

Separation

ration 28th Februrary 2011 20 / 17

Jörgen Samson (CALICE Analysis Meeting) Clustering-Based Two Particle Separation

Charged - Neutral vs. Charged Charged

Jörgen Samson (CALICE Analysis Meeting) Clustering-Based Two Particle Separation

21 / 17