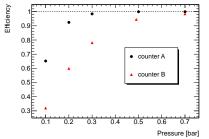
#### Status of W-HCAL analyses at CERN

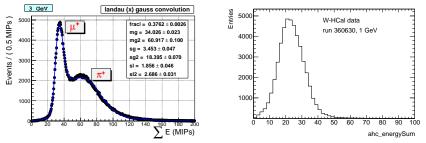
Angela Lucaci-Timoce




### **Cherenkov counters**

• Analysis started by Wolfgang Klempt and Dominik Dannheim, continued by **Bruno Lenzi** (a post-doc working for a few weeks in our group)

#### Cherenkov efficiencies


- Studies done on dedicated 1 GeV runs with varying pressures
- Assume Cherenkov signal comes only from electrons (since thresholds for other particles are higher)
- Efficiency calculated as  $\epsilon_{A B} = N_{A \& B} / N_{B, A}$ , with  $N_A$ ,  $N_B$ ,  $N_{A \& B}$  the number of particles triggered by counters A, B, A and B

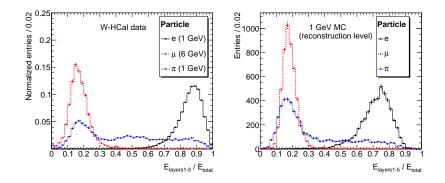
| run    | Charge  | Pressure<br>[bar] | Electron<br>fraction |
|--------|---------|-------------------|----------------------|
| 360583 | -1      | 0.5               | 0.58                 |
| 360584 | -1      | 0.1               | 0.85                 |
| 360628 | $^{+1}$ | 0.3               | 0.75                 |
| 360629 | +1      | 0.2               | 0.76                 |
| 360630 | +1      | 0.7               | 0.76                 |



### Particle ID in 1 GeV runs

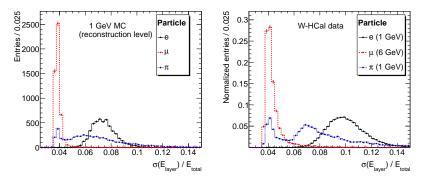
- For  $E_{beam} \ge 3$  GeV:
  - Cherenkov to select/veto electrons
  - energy sum in HCAL to separate between muons and pions
- For  $E_{beam} = 1$  GeV:
  - Cherenkov to select/veto electrons
  - energy sum in HCAL CANNOT be used to separate between muons and pions  $\Rightarrow$  need other variables (see next slides)




- Next slides: plots with data and Monte Carlo
- Note: studies of W-HCAL simulation and digitisation not yet finished, hence no superimposing of data and Monte Carlo (only shape comparison)

### Particle ID in 1 GeV runs: 'Shower depth'

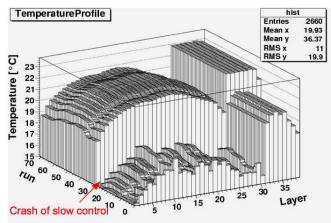
• 'Shower depth': sum of  $E_{layers 1-5}/E_{layers}$  (initially used by Nils Feege)


Idea:

- e: deposit most energy in the first layers
- μ: constant energy loss (MIPs)
- π: penetrate more than e

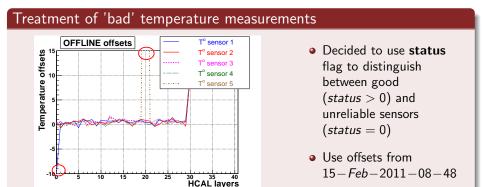


# Particle ID in 1 GeV runs: 'Uniformity of energy loss'


- 'Uniformity of energy loss': standard deviation of energy per layers
- Expect small values for muons, large for other particles

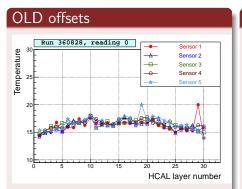


 $\Rightarrow$  Can have a handle for particle selection based on Cherenkov triggers and on selected variables ('shower depth', 'uniformity of energy loss') also at low energies


#### **Temperature profiles**

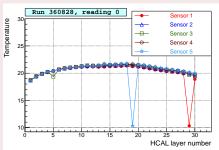
- Problem noticed in the temperature profile: 2 days before the end of the data taking, we had a slow control crash. After this, a sudden increase of about 4 degrees observed in the temperature profiles
- Plot presented by Clemens Günter (DESY) at the HCAL main meeting, end of January




#### **Temperature profiles - continued**

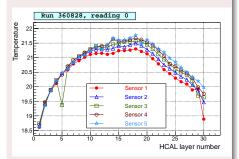
- The problem: we forgot to calibrate the temperature sensors for CERN 2010 (wrong offsets, from FNAL period, were used)
- $\Rightarrow$  It was necessary to re-do temperature calibration measurements (Wolfgang and Dominik) tedious, since needed to wait for the HCAL to be close to thermal equilibrium
- 1-2 weeks spend on development of new tools to write the temperature offsets into the data base, and on the treatment of 'bad' temperature measurements




- Until now:
  - A temperature sanity range was applied:  $0^{\circ} < T^{\circ} < 45^{\circ}$
  - For sensors outside range, the mean temperature per module, of 'good' sensors, was taken
- New numerical attempt:
  - Use **median** (middle of distribution)
  - 'Good' sensors should be within 1 degree Celsius from the median
- Next plots: Done for run 360828, run taken just before the slow control crash

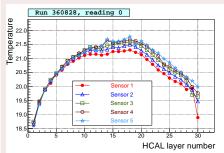
# OLD treatment of 'bad' temperature measurements: old vs new offsets




- Large spread and global shift due to wrong offsets applied
- Problematic sensors forced to 20° (but STILL inside the safety range!)






- Smoother
- Problematic sensors are now at the reference temperature of 10°

## NEW offsets, with correction for 'bad' status sensors



 Problematic sensors flagged as 'bad' and removed, use median of 'good' sensors instead

#### NEW offsets, with correction for 'bad' status sensors and for 1 degree variation



• The last outlier removed by the request to be within  $\pm 1^\circ$  from the median

• Many bits and pieces already in place:

| Intercalibration        | <ul> <li></li> </ul>                                   |  |
|-------------------------|--------------------------------------------------------|--|
| Gain                    | To be rewritten to db with correct $\mathcal{T}^\circ$ |  |
| MIP                     | To be written to db with correct $\mathcal{T}^\circ$   |  |
| Cherenkov counters      | <ul> <li></li> </ul>                                   |  |
| Temperature calibration | ~                                                      |  |
| Tracking                | To write db folders used during digitisation           |  |
| W-HCAL in Mokka         | First version ready, to be checked                     |  |
| Digitisation            | To be cross-checked                                    |  |

• Analysis: hopefully soon there...