

ILD vertex detector: VXD Integration

Status 2011 April 18

J.Baudot, for the IPHC group baudot@in2p3.fr

- **x** Overview
- **x** Mechanics
- **x** Cooling
- **x** Cabling
- **x** Material budget

- Mechanics
- Cooling
- Cabling
- Material budget

Geometry - 1

Double sided ladders

- **x** Ladder is equipped with two layers of sensors
 - → ~2mm separation between two layers in one ladder
 - → Material budget [LOI target) 0.16% X0
- **x** 3 layers

Single sided ladders

- **x** Ladder is equipped with one layer of sensor
 - → Material budget (LOI target) 0.11% X0
- **x** 5 layers

Geometry - 2

Geometry definition

- **x** Sensitive width of ladders is fixed, an additional 0.5 mm with is provisioned for electronics
- Number and orientation of ladders are computed to reach 100% coverage with some overlap

X

- Note: a module is a basic sensing element,
 ~125mm long, equipped with one readout cable
 - → A double sided ladder requires 2 modules, one one each side
 - → A 250 mm long ladder requires 2 modules for one length

layer	radius (mm)		width (mm)		length (mm)		# ladders		# modules	
	single	double	single	double	single	double	single	double	single	double
1	15	16/18	11	11	125	125	10	10	10	20
2	26		15		250		11		22	
3	37	37/39	22	22	250	250	11	11	22	44
4	48		22		250		14		28	
5	60	58/60	22	22	250	250	17	17	34	68
total							63	38	116	132

Sensor options

CMOS pixel sensors

- **★** Power dissipation ~100mW/cm²
 - → Full detector O(1) KW while active
 - → Factor 1/50(100) for average
- **x** Servicing required

→ ?

CCDs

- **x** FinePixelCCD, ISIS
- ✗ CCD to be kept at <u>low temp</u> Power dissipation ? mW/cm²
- **x** Servicing required

→ ?

DEPFET sensors

- **x** Power dissipation ? mW/cm²
- **x** Servicing required
 - ➔ Read-out ASICs

! INCOMPLETE SLIDE !

Ladder prototypes

- **x** Bristol U. DESY, IPHC, Oxford U.
- **x** Running from 2009 to 2012
- ✗ Double sided ladder with 0.3% X0 goal
- Focus on CMOS sensors
 BUT should accommodate other technologies

SERWIETE project

- x IPHC, IKFrankfurt, IMEC Leuven
 - → EU-FP7, Hadron Physics 2 project
- Embedding the sensor inside kapton & metal layers
 - → Benefit from ultimate CMOS thickness (20-30µm)
 - \rightarrow Allow very thin metal traces down to 1µm
 - → Material budget for 1 module O(0.1) % X0

Studies foreseen

- **x** Power pulsing
- Alignment (AIDA project in EU-FP7)
- x Lorentz force impact

Mechanics

- Cooling
- Cabling
- Material budget

Mokka vs Mecha. model

🕒 Mokka (VXD03)

- Simplistic double-sided ladder
 = 2xsingle-sided ladder
 BUT radiation length match LOI target
- Cryostat larger R(+10mm) & z (+10mm)/ mecha. model

Mechanical model

- **x** Miss ladder fixtures on support
 - → Support z is -20mm / Mokka
- **x** Miss kapton cables from ladders to pipe
- x Support radius lower (-5mm) / Mokka

Supporting the VXD

Layer support

- **x** 1st layer is mounted on the beam pipe
- **x** 2nd & 3rd layers mounted on the Beryllium support
- **x** Beryllium support clamped on beam pipe
- **x** No study on the impact of beam pipe deformation
- **x** No technical drawing available (manpower)

Weight

- **x** Ladders:
- **x** Beryllium support:
- **x** Cryostat:
- **x** Cables (up to cryo.):

Mechanical alignment

- Initial survey (<100μm) should be good enough
- ✗ <u>Note:</u> IR light go through CMOS sensors (both sides)

Mounting concept

x No detail work done

- Overview
- Mechanics
- Cooling
- Cabling
- Material budget

Two options

Room temperature operation

- **x** CMOS-like sensors
- **x** Passive cooling
 - Air flow ~ 1 m/s (for mech. Stability)
 - ➔ Sensor Temp~10-30 °C
 - ➔ Air Temp. Under study
- **x** No real cryostat, nevertheless
 - ➔ Faraday cage needed
 - ➔ May require air separation / SIT
 - ➔ Some thickness of aluminium
- **x** Tubes required on beam pipe
 - ➔ Diameter ? mm

Negative temperature operation

- **x** FinePixel-CCD-like sensors
- **x** Active cooling required
 - \rightarrow CO₂ evaporation in tubes
 - ➔ Sensor Temp~ -(5-15) °C
- **x** Real cryostat needed
 - → Backbone 0.5 mm aluminium
 - ➔ Isolation material = 10mm styropor
 - → 0.5(?) % X0
- **x** Tubes required on beam-pipe
 - **→** ?

Mechanics

Cooling

Cabling

Material budget

ILD-VXD integration, 2010 July 6-

Cables inside the cryostat

 Flat kapton cables running from each ladder to the cryostat at the beam pipe level where they are connected to a small patch panel (cannot go through the cryostat due to faraday cage spec.)

25 deg

16 deg

10 deg

Beam pipe

FTD 0

cables

Electrical spec.

- **x** Kapton cable: \sim 50 μ m thick, \sim 2cm wide
 - ➔ Realistic mat. budget including metal traces ~0.02 to 0.03 %X0
 - → In Mokka, only 50 μ m of kapton = 0.018 % X0
- **x** One such cable per module, so PER SIDE
 - ➔ 5 cables running at 10 deg along the beam pipe
 - ➔ 60 cables crossing acceptance between 10-25 deg

Taking into account overlaps: [10, 16] deg : ~0.15% X0 [16, 25] deg : ~0.05% X0

Micro patch panel

VXD arrangement

Aluminium Faraday cage+cryostat

Beryllium support

Laver 2

Layer 1

Layer 0

Interaction Point

Cable outside the cryostat - 1

Cables running on the beam pipe, outside the cryostat, ~4m

Powers

- **x** Assumptions are:
 - → Sensors are active only during a period of few ms (around the train)
 - → Total instantaneous power between 300 to 600 W (300 Mpixels with 1 to 2 μ W/pixel)
 - This power range should cover all technologies and geometry (3 double or 5 single layers)
 - → Neglecting the power required from potential additional boards located on the cryostat
 - ➔ Powering voltage is 3 V
 - → Cable length is 4 m
 - → Allowed voltage drop < 0.1V
 - → Powering from both side of the detector, so current load (100 to 200 Amps) is divided by 2/side
- **x** Copper cables:
 - → Section: 0.4 to 0.8 cm²
 - → Weight: 4 to 8 g/cm
- **x** <u>Note:</u> the cables dissipate an instantaneous power of $(0.1 \text{ V} \times 100 \text{ to } 200 \text{ A} = 10 \text{ to } 20 \text{ W})$ only during the ms when the sensors are functional. So, considering power pulsing, the average power dissipated by these cables is at most 5% of the instantaneous power.

Cable outside the cryostat - 3

Cables running on the beam pipe, outside the cryostat, $\sim 4m$

Control signals

- *★* ~15 lines with ~15 Amps total <u>per side</u>
- **x** To limit voltage drop to 100 mV with copper cables
 - → Cable copper section ~ 5mm²
 - → equivalent to a weight load ~0.5 g/cm

Cable outside the cryostat - 3

Cables running on the beam pipe, outside the cryostat, ~4m

Data

- **x** Remember that the data rate is dominated by the e[±] from beamstrahlung
 - → Total hits expected in average per train ~ 3.3×10^6 (for 5 single-layers) or 4.7×10^6 (for 3 double-layers)
 - → Taking into account Poisson fluctuation requires a factor x3
 - ➔ Security factor wrt simulations requires another factor x3
 - → Maximum expected hits overall the detector \sim 45x10⁶ hits/train
- **x** Assuming 100 bits to encode one hit (based on an average of 5 pixels per hit)
 - → Total detector information is 4 Gbits for one train (1ms) (this includes security factors)
 - → Non-uniform distribution of ladders: at r~15mm: 130 Mbits/ladder/train, at r~37mm: 30 Mbits/ladder/train, at r~48mm: 7 Mbits/ladder/train
- **x** Assuming we can use optic fibers featuring <u>10 Gbits/s</u>:
 - → OPTION with instantaneous (during 1 ms) readout: data rate ~ 4 Tbits/s → 200 fibers per side clearly, this option requires either a serialization at the support and/or fibers with higher rate
 - → OPTION with delayed readout (during 200 ms): data rate ~ 20 Gbits/s \rightarrow 1 fiber per side
- **x** Difficult yet to estimate the material budget from fibers (assuming 1g/cm for glass):
 - → Probably inner layers will have 1 fiber at each ladder end -> 20 fibers per side
 - → The rest of the layers can be read-out with about 10 fibers
 - ➔ A LOT OF QUESTIONS STILL TO BE ANSWERED THERE

Cables for cooling

ILD-VXD integration, 2011, April 18

Mechanics

Cooling

Cabling

Material budget