Collaborative Engineering Supported by EDMS.

How EDMS helps to synchronize engineering and simulation models.

Benno List DESY -IPP-ILD Integration Workshop, LAL, Orsay 20.4.2011

TDD, TDR and ILC-EDMS

Technical Design Report (TDR) summarizes TDD for publication

Technical Design Documentation (TDD) captures entire design efforts, results & rationale

Control of the second sec	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A rearrant of the control of the con			Cost from the form	
Param	eters	Specifications	Cost Estimation	Calculations	CAD Models Design Summa	ary

ILC-EDMS <u>organizes</u> the Technical Design Documentation, providing structure, traceability, version & configuration mgt., and change control

More Effort needed More Rewarding

Document Persistency

Documents are just "dumped" into EDMS so they don't get lost

Document Traceability and Consistency a posteriori

Documents are dumped into EDMS and Relationships between documents are drawn (A depends on B),

Document Traceability and Consistency during development

EDMS is integrated in design process: Dependencies between documents are <u>used</u> to make sure documents are correct, complete, consistent

General Policy

> The general policy should be:

If someone else's work depends on results of your work: **Put it into EDMS**

If you need input from someone else: Demand that it is documented in EDMS

Example: Requirements for ARUP: Write up a 1-page document with yesterday's findings, make it official and put it on EDMS

Role of EDMS

- The role of EDMS: Collect all relevant technical documentation, make it persistent beyond 2012
- > Proposed policy:
 - Put in as many documents as possible, including presentations documenting the design [but do not aim to collect all talks, we don't want a copy of indico and ilcdoc]
 - Make documents avaliable to registered ILC EDMS users (mark as <u>"released</u>"), be as open as possible.
 restrict access where necessary (cost related)
 - Official documents defining the baseline are linked from WBS (quality controlled)

We have defined ILD_XXX Teams and Projects; at the moment, <u>released</u> ILD documents are accessible by all ILC users

 \rightarrow this can be changed immediately, just let me know!

Documents within "Teams" are restricted to Team members, i.e. essentially inaccessible!

EDMS Contacts

- I have taken the liberty to have EDMS accounts created for several of you; please log in at least once and change the password
- For any questions, support etc: ipp-support@desy.de Central support Benno.List@desy.de Myself (don't hesitate to contact me!)
- We offer to put documents and CAD models into EDMS for you, just send us the files with a description:
 - Title / Name (human-readable, not a filename!)
 - Short description (about 1-2 sentences)
 - Author
 - Date

What is in EDMS: ILC

For ILC GDE: Work on Technical Design Documentation has started

- Will have Technical Baseline Reviews, one for each Technical Area System, over next 12 months, and document the outcome in EDMS
- Done already for the Positron Source (February), next meeting will be in July for Damping Rings
- These reviews result in
 - more detailed information
 - may change global parameters (e.g. bunch timing!)
- > \rightarrow Look at the documents in EDMS to see what the status is!

ILC Accelerator and Tunnel Models

Accelerator Components: D0000000954373 Tunnel model: D0000000955253

ILC Top Level Parameters

Atdp2_machine_parameters.xlsx - OpenOffice.org Calc	
<u>File Edit V</u> iew Insert F <u>o</u> rmat <u>T</u> ools <u>D</u> ata <u>W</u> indow <u>H</u> elp	
🖡 🗇 🖕 🔚 🔊 🖉 🎾 🦂 🍪 🗠 🍄 📖 🚜 🗅 🖺 - 🔩 🏊 - A - I 🕤 🖓 👬 🌌 🏏 IX S - A - I	🧭 📰 100% 🔻 🕜 🖕
	💳 🗆 🖂 - 🕅 Taggia Crid Lings for Current Shoot
F18 🔽 🏂 💭 🚍 🛛 926	
	J K L M
1 IP and General Parameters TF = Traveling Focus	
2	upgrade
3 Centre-of-mass energy <i>E_{cm}</i> GeV 200 230 250 350	50 500 1000 <i>comment</i>
4 Beam energy <i>E</i> _{becm} GeV 100 115 125 175	75 250 500
5 Lorentz factor γ 1.96E+05 2.25E+05 2.45E+05 3.42E+05	05 4.89E+05 9.78E+05
6	
7Collision rate f_{rep} Hz555	5 5 4
8 Electron linac rate f_{imax} Hz 10 10 10 5	5 5 4
9 Number of bunches n _b 1312 1312 1312 1312	2 1312 2625
$10 Electron bunch population N_{.} \times 10^{10} 2 2 2 2 2$	2 2 2
$\frac{11}{N_{+}} \qquad Positron bunch population \qquad N_{+} \qquad \times 10^{10} \qquad 2 \qquad 2 \qquad 2 \qquad 2$	2 2 2
. 12	
13 Bunch separation Δt_b ns 534 534 534 534	34 534 356
$14 \text{ KCS} \qquad \text{Bunch seperation } \overset{\times}{}_{\text{RF}} \qquad \overset{\times}{}_{b} \overset{\times}{}_{\text{RF}} \qquad 694 694 694 694$	04 694 463
$15 \qquad \text{Pulse current} \qquad 15 \qquad \text{mA} \qquad 6.0 \qquad 6.0 \qquad 6.0$.0 6.0 9.0
17 Bunch separation $\frac{2}{b}$ ns $\frac{712}{712}$ $\frac{712}{712}$ $\frac{712}{712}$	12 712 356
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 45 00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.5 4.5 9.0
20 σ mm 0.3 0.3 0.3 0.3	3 03 03
22 Electron RMS energy spread $\frac{1}{22}$ \frac	12 0 222 0 105
23 Positron RMS energy spread $\Delta p/p$ % 0.120 0.148 0.136 0.007	07 0.068 0.038
24 Electron polarisation P % 80 80 80 80	80 80 80
Reference in the second	
Sheet 2 / 4 PageStyle IP Parameters 100% STD	Sum=926

Parameter List:: D0000000925325

ILC Lattices

- Lattice files from BDS are completely available from EDMS, including full MAD files, magnet lists etc.
- > However: There is no complete lattice for push-pull. :-(

Related Items	Properties		Preview Image(s)
Attaches Export Table As CSV OHTML OXML File Name	ILC Document Type: Name:	Specification BDS lattice for SB2009 - AD&I, Nov 2010 undate	BB2009 e- BDS
SB2009 Nov10.zip Image: Sb2009 Nov10.preview.jpg Related Items s In Team Folder : 1 object	Description:	Update of SB2009 AD&I lattice: Upstream polarisation chicane was separated in both electron and	Fast abort line Chicane to detect LW photons Sacrificial Dogleg
Lattices s Depended On By : 1 object Name	Access Scheme in Use: Designated	positron side of the BDS. Project: ILC_BDS	-collimators + -chicane to detect off energy beams -4
SB2009 Excel data from Nov 2010 lattice deck.A.1.1 S Related From Documents : 2 objects	Access Scheme (Project):	ILC_BDS	0 500 1000 1500 2000 2500 3000
Name ILC Beam Delivery System lattice design changes since the RDR.A.1.1 Indicate to ILC SPE Beam Delivery System A11	Creator: Work Status: More Propertie	List_Benno Released	

DESY

MDI and Experimental Hall Design

- There iare ILD_MDI_Team and ILD_MDI_CAD_Team for ILD-internal work on MDI
- There are also ILC_MDI_Team and ILC_MDI_CAD_Team for ILD/SiD and ILC common work on MDI and experimental hall issues
- Currently we have one (simple) hall model from Marco Oriunno in the ILC_MDI_CAD_Team. This should be a good place to exchange information on experimental hall issues between ILD and SID.

ILD Top Level WBS Node

Related Items

Related Items

DES

餐 Item Information - Mozilla Firefox											围	e - 🗆	×
<u>F</u> ile <u>E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks	T	ools <u>H</u> e	lp										
🔹 🗼 👻 🗟 🏠 🖸 desy.de https://teamcenter.desy.de/TC70PRD/controller/home											0		
👸 Most Visited ▾ 🔤 PDG ≶ SPIRES	s 🕻	SPIRE	S DESY 🏨 DESY 🚇 N	/IR WWikid	e 💿 ILC EDM) IPP R	eporting 🏽 😫 Calenda	AL	CPG11 號 ILD	RIM 🔐	Agenda		>>
Z Fukushi 🌆 ILD Regi 💿 Iter	m l	× (iltem Infor 🕅 Docun	ne 🛛 🖂 Do	cume 🔽 Aktue	lle I	startseite.	echnisc	💿 Kernscl	า 🖂	GRS-Not.	. 4	-
							Sea		-	>	Home Exi	DESY	
							Advanced S	Search			Benno Lis	t	
Main Menu Classification		Check Out	: Submit Item F	Reports	Jokmark H	istory	More Actions		-				0
Select View:	Ç	Gene	eric Part . D0000000052	3907.A.4.1	tem info : Relati	15							
		Summary	Assembly Structure P	roperties Re	elated Items	s As	signment 🗍 Classificati	on Revi	ewer/Approver	All Versio	ns Aco	ess	_
E 🥔 ILD		EDMS-ID		Hama 7	Description	Work Status	Access Scheme in Use	ltem	Last Modified	Last	Language	Supers	ed
Gelorimeters				Marrie	beenpaon	Working		Туре	by	Update			
German Region] = 🖗 I	D00000000523907,A,4,1	ILD		(in Vault)	Project: ILC_ILD_WBS	Assembly	Buesser_Karsten	16:36:15		False	=
ILD Documentation		± (Item contained by Bookmark collections										
		± (芦 Attaches										
			芦 Has Description										
Liaison Office			■ D0000000913575,A,1,1	ILC Contacts	ILC contact people and working group leaders	Working	Team: ILC_ILD_Team		Eucker_Silke	04.06.2010 11:05:56	English	False	
	C		D0000000913605,A,1,1	ILD0dimensions- weiath130209	ILD0dimensions- weiath130209	Released	Project: ILD_Integration		List_Benno	01.04.2011 13:09:59	English	False	
Physics & Optimization				2	Definition of the ILD								
				Definition of the	reference detector,								
1 Solenoid			D0000000913635,B,1,4	LD reference detector	updated version 13.11.2008.	Released	Project: ILD_Integration		List_Benno	18.04.2011 14:07:42	English	False	•
					ILC global parameters for LOI								
🗈 🧬 Yoke			D0000000913665,A,1,1	ILD Workplan-LCWS	ILDworkplan-	Working	Team: ILC ILD Team		Eucker Silke	13.10.2010) English	False	
		-		2010	LCWS10.pdf				-	12:29:53	-		
	•	-	E D0000000013605 A 1 1	ILD - Letter of	Large	Releases	Droject: II.C. II.D. MRS		Russer Karatan	01.03.2011	English	Foloo	
System Status: OK			+ D000000013695,A,1,1	Intent	Intent February	Released	Project: ILC_ILD_VVBS		Duesser_Narsten	16:39:17	English	raise	
				II D. Coordingto	LD Coordinate System								Ŧ
Done	10		D0000000914315,A,1,1	System	Definition (derived from ILD	Working	Team: ILC_ILD_Team		Buesser_Karsten	25.06.2010 13:19:07) English	False	///
				Definition	predecessor LDC)								
		Ξ	🏳 Has Design				Teem			02.07.2010			
			⊕ D0000000872433,A,1,3	Model		Working	ILD_CAD_Integration_Team	Assembly	Welle_Norbert	13:48:34		False	
	0		⊕	ILD detector simulation model	ILD detector as implemented in the Mokka simulation	Working	Team: ILD_Physics- and-Optimization_Team	Assembly	List_Benno	08.04.2011 09:50:10		False	
	C		± ⊗ D0000000989043,A,1,1	ILD Model	STEP import from ILD_SM4_05-04-11.stp; Author: Matthieu Jore, LAL	Working	Team: ILD_CAD_Integration_Team	Assembly	Welle_Norbert	12.04.2011 16:25:54		False	
		+	🎁 Has Fabrication Part										
		÷	📁 Is Realized As										2
		+	🎁 Is used by Generic Part										5
		+	📁 Uses Generic Parts										

Important Documents: Parameter Tables

ILD0dimensions-weigth130209: D0000000913605

- Definition of the ILD reference detector: D0000000913635
- > Both taken from ILD Wiki pages
- If I had a Wiki password, I would have put links to EDMS into Wiki

Definition of the ILD reference detector

ILD Joint steering board, September 21, 2008 (updated version: November 13, 2008 F Gaede)

1. Introduction

In the following document the ILD detector is defined, as discussed on the second ILD meeting in Cambridge, UK, September 2008. The detector defined is the so-called reference detector for ILD, which has the following implications:

- The overall dimensions and main fetures of the detector and defines as a basis for the further evolution of ILD. They will be use dforthe LOIm 2009. The details of the detector are defined priorarily for the purpose of performance studies. This detector will be implemented in the ILD simulations software (MOKEK And Lipper) and will be used for future performance twises. This
- (no URA: A min Apper) and winde used for time performance studies . Insis detector will be used for any hugs scale Mante Cale hy on dottion from now on. As much as possible the choice of persure term is based on studies which were presented at Cambridge. However in many cases studies have either not yet been finished, or are still in carek hoise. Decisions taken in these cases are driven by the
- desire to define one detector. They may change later, once more information is available, or better reconstruction and/or analysis techniques have been developed.
- Where or possible we have tried to define a vishal detector, which will deliver a certain performance, but which does not define a specific it to hology. Is some in general this does not mean that ILD has chosen this technology (by justify the technology chosen is the coursently most matter technology. This however does not may have pra-decision on an eventual technology choice for the ILD group. In some cases we distinguish the between a hose has detect m. and possible ungrade on
- In some cases we distinguish between a base him detector, and possible upgrade or extension options. This refers to additional detector e kunents, which may or may not be in kuled, depending primarily on the wanted performance, and possible optimization results.
- In many cases we have not yet chosen a specific technology, but fo law more than one cohim. These solutions correctly are all considered with equalive signt, and a chieving more R&D results on all of them is considered in highest priority. During the process hading up to the LOI we will continue to evaluate this, and decise how many different options we will describe in the LOI.

2. Basic Parameters

The following table shows the main parameters of ILD_1:

- Tables of Parameters (in particular, dimensions) should be provided together with the models, not reverese-engineered from them
- Parameter tables are an important tool to synchronize Engineering and Simulation models
 - Needs a list of parameters with precise definition: Is the "TPC outer radius" the radius of the field cage, or with screw heads, or with cables and services?
 - Simulation group works on automated procedure to calcululate defined geometry parameters within Mokka and store it in XML output files (GEAR files)

 \rightarrow we can have complete geometry parameter tables for each new Mokka model

 Simulation people also think about providing additional values, such as material budget in radiation lengths → very useful for optimization.

CAD Model Integration in EDMS

> DESY-IPP offers to check in all STEP files into EDMS → just send them to me by email (in zipped or rar'ed form)

Some useful conventions that help integration

- Coordinate system: There is an official ILD coordinate system, with z along the mean beam direction, y axis up
- All assemblies should have the IP as reference point (some CAD systems have problems with shifted origin)
 → See D0000001777642 for an example
- CAD models should have a reasonable hierarchy
- WBS nodes (= subdetectors) should appear in this hierarchy, e.g. ECAL Barrel, TPC, SIT, ...

Available CAD Models for ILD in EDMS

- D0000000872433: Placeholder model: Still a very preliminary version
- D0000000989043: Engineering model from Matthieu → will be updated

D0000000952125: Mokka simulation model ILD_01_pre01 → the plan is to update this model, as new Mokka pre-releases become available

 \rightarrow Also available as 3D-PDF (but veeeeeeeery slow, because of too much detail in SIT/SET/ETD subdetectors)

It is possible that you cannot access (some) of the models, until they have been released

Different Points of View

Different Models

Placeholder Model for System Layout

Placeholder Model

> Purpose:

- Decouple detailed engineering of subsystems
- Define overall layout and available space for components
- Separate volumes exclusively used by one subsystem from common areas for cabling, cooling, support

Hierarchies

Assembly oriented Design oriented

Important: All models should have corrsponding leaf nodes at some levels

Benno List | Collaborative Engineering Supported by EDMS | 20.4.2011 | Page 21

Some Remarks about the famous WBS

WBS: <u>Work</u> Breakdown Structure

- Structures which <u>Work</u> has to be done, and structures the output of the work:
 - CAD models of subsystems
 - Parameter tables
 - Requirements
 - Performance evaluation
- WBS does not care which parts are physically (dis)connected or in which sequence they are assembled, but how they are conceptually related.
 - Example: Physically, ECAL Endcap and HCAL endcap are mounted together, but conceptually ECAL endcap and barrel may be closer related
- > WBS is also not structured according to which-institute-does-what
- But it is structured according to responsibilities: Somebody should be (or at least feel) responsible for each WBS node

Example: WBS for a Computer

Case

- Case 1: Large case
- Case 2: Small case
- Motherboard
- > CPU
 - CPU 1: Dual core, 3.1GHz
 - CPU 2: Quad core, 3.3 GHz
- Hard Disk
 - 500 GB HD, 5200 rpm
 - 1 TB SCSI, 7200 rpm
 - 256 GB SSD

Integration

- Model 1: Small Case + Motherboard + Dual core CPU + 256 SSD
- Model 2: Large case + Motherboard + Quad core CPU + 1TB HD

CPU sits on motherboard, but in WBS hierarchy it is on the same level

> **Integration** takes components from other WBS nodes and delivers a complete (integrated) product

WBS and Engineering / Simulation Model Hierarchy

- > WBS is not **the** hierarchy for engineering model or simulation model
- But: At some level there should be common nodes: Every model (placeholder / engineering / simulation) should have
 - Barrel ECAL
 - TPC
 - SIT
 - Yoke
- > Deliverables for Barrel ECAL:
 - Placeholder
 - Detailed engineering model
 - Simulation code (Mokka driver plus steering parameters)
 - Overall description (human-readable)
 - Excel sheets with parameters (outer dimension, weight, radiation length, power consumption)
- Engineering integration takes engineering model and integrates it into complete detector model
- Mokka integration group takes driver and steering and integrates it into Mokka model ILD_01

> To which detail level should an integrated CAD model be done?

Experience from HERA-B, FLASH: A complete, detailed CAD model of a full detector does not work.

Advice, tested by XFEL: Stop detailed intergration at subdetector level, define placeholder model, integrate models using JT files for "pretty pictures"

For which purpose would one need a fully detailed model of the whole detector?

How should a process look like that ensures good coherence between engineering and simulation models?

DEMO: ILC Reference Tunnel in EDMS, *0816343

> Contributions to ILC 3D model

- Civil underground engineering John Osborne, CERN
- Ring to main linac, RTML Norbert Collomb, STFC
- Main linac, ML Don Mitchell, FNAL
- Tunnel infrastructure (MW Zander: No result) → John Osborne, CERN
- Master model assembly & fixing Norbert Welle, DESY
- > Process according to experience from European XFEL, cf.
 - N Bergel, L Hagge, T Hott, J Kreutzkamp, S Sühl, N Welle Inter-Disciplinary Mechanical and Architectural 3D CAD Design Process at the European XFEL EPAC 2008, Genova
 - N Bergel, L Hagge, A Herz, J Kreutzkamp, S Sühl, N Welle 3D CAD Collaboration at European XFEL and ILC PAC 2009, Vancouver

Issues: Complexity of Models (Adequate Level of Detail)

detailed model in facility planning less detail would not reduce model usability, but could improve model performance

- Performance: Complexity of model adapted to objective
 - Facility planning needs placeholders for space allocation, entire facility
 - Visualization needs "sufficient" details for good "impression", no inner geometry
 - Technical design detailed design, individual components only

sufficient level of detail for facility planning & visualization

Lars Hagge, Norbert Welle | Vision Sharing with 3D CAD at ILC | 15.12.2009 | Page 10

- > Define coordinate system (origin and orientation)
 - origin at interaction point (IP), z-axis in e⁻-Beam direction, y upwards, right-handed
- > Define set of reference points
 - on set of reference points referring to shafts and tunnel segments: Be able to "tie" elements to buildings – e.g. place racks and installations in tunnels
 - on set of reference points referring lattice elements: Be able to "tie" elements to beam positions – e.g. place models and magnets in beam
 - both sets are "connected" at IP
- Enforce every model to contain one reference point
- > Define, agree upon and publish design guidelines

Exploring the ILC in Virtual Reality

- > Use VR to "experience" the planned facility
 - improved perception of space, e.g. reachability, room for movements and transport
- Preparing models for VR presentation
 - add light sources
 - add textures
 - add material properties, e.g. color, transparency, reflection
 - suppress "invisible" elements, e.g. space for transportation and installation activities, emergency escape routes, unnecessary details, inner geometries

The XFEL Design & Integration Process

Stefan Sühl WP40, DESY XFEL Workshop, 23.09.2008

Yugs	
View Madron Advanced Andrein DM	
Item Name D0000000305441_X5IN.jt	

Stefan Sühl WP40, DESY XFEL Workshop, 23.09.2008

7

Day 2-5: 3D CAD QA Team performs collision checks

91-DEAS-12 MCSaries mdt - local_Teams sourbl : C/grege\UDEAS12'(J_mit/XINUmf)	Distantegence Check					BAS Loone Options Help	X •
	Instance 1	- E F	nstance 2	Configuration (Sequence Frame) [2USAMMENST1 2		Options	•
	Vand_02_6377:6 Vand_02_6377:6 Schiplastee_01 Vand_25351N_1 Vand_25351N_1 Vand_81351N_1 Vand_81351N_1 Decke_K51H_85_ Decke_02_211:2 Decke_02_211:2 Vand_12351N_1 Vand_81351N_1 Decke_K51H_80_1 Vand_13_N51N_1 Vand_13_N51N_1 Vand_02_6377:6	377 XSIN_IU 377 XSIN_IU 2,322:342 XSIN_IU Ba_614:614 XSIN_IU Ba_614:614 XSIN_IU Ba_614:614 XSIN_IU Ba_614:614 XSIN_IU Ba_204:204 XSIN_IU Ba_204:204 XSIN_IU Ba_397:337 XSIN_40 B_189:189 XSIN_1U 240:240 XSIN_40 B_389:369 XSIN_1U 262:262 XSIN_50 Ba_389:369 XSIN_1U 262:262 XSIN_1U 377 XSIN 1U 377 XSIN 1U 0 Image: Same Sin	C_H2C_L0_6394:6394 C_K06_L0_6387:6387:2 C_K06_SE_6390:63900 C_ABL_K7_6703:67032 C_ABL_K7_6703:67032 C_ABL_K7_6703:67032 C_ABL_K7_6703:67032 C_L0L_K1_6400:6420:66222 C_L0L_K1_6400:64002 C_L0L_K1_6706:67062 C_L0L_K1_6706:67062 C_ABL_K1_6706 C_ABL_K	USAMIERSTI USAMIERSTI USAMIERSTI USAMIERSTI USAMIERSTI USAMIERSTI USAMIERSTI USAMIERSTI USAMIERSTI USAMIERSTI USAMIERSTI USAMIERSTI USAMIERSTI USAMIERSTI USAMIERSTI USAMIERSTI USAMIERSTI USAMIERSTI USAMIERSTI USAMIERSTI	1120764999 532500500 630600499 423500499 133650499 133650499 133650499 133650499 133650499 30000050 = 90000050 = 90000050 = 90000049 = 90000049 = 90000049 = 90000049 = 66750049 = 66750049 = 66750049 = 61250049 = 61250049 = 1 1 100 %		
EDFASHet 26 "Bi3-XSIM_Bouwerk_3" Selected 1 entities. Use "Highlight_Selection" to see all Smlected Instance: "XSIM_DB000000395411.46.Kein" 26 "Bi373-NSIM_Kline_373" 41		LIGEAS Promot ckinstances for the first in ckinstances for the second	ss terference set nd interference set			× :	

Stefan Sühl WP40, DESY XFEL Workshop, 23.09.2008

8

 Day 2-5: 3D CAD QA Team documents collisions and informs responsible persons from affected trades

Stefan Sühl WP40, DESY XFEL Workshop, 23.09.2008

Day 2-10: Trades reach agreement on changes

Engineers from sub-systems describe and sign-off change decisions and route them to their design engineers. Designers change design models in their authoring 3D CAD system.

Benutzerkennung	Zuweisung	Unterschrieben von	Ausgeführte Aktion	Name des Lebenszyklus	Unterschriftsdatum	Kommentare
Schulz Carola	Zur Prüfung		Keise	LCIII Empty Routing List A.1		
Ahrena Jileka	Submitter Signature			LCIII Empty Routing List, A,1		
Cabelo_Cesar	bite um Ergänzung/Bearbeitung	Cabelo_Cesar	Keine	LCIII Empty Routing List.A.1	05/30/2008 07:58:46:672	dein Abschnitt Gruß Cesar
Dost_Per_IG	bite um Ergänzung/Dearbeitung	Dost_Per_IG	OK	LCIII Empty Routing List, A,1	05/29/2008 13:06:33:359	
Schulz_Carola	bite um Ergänzung/Bearbeitung		Keise	LCIII Empty Routing List, A,1		
Stoye_Thoraten	bite um Ergänzung/Bearbeitung	Stoye_Thoraten	OK	LCIII Empty Routing List, A,1	05/05/2008 09:44 (25:889	
Suehi_Stefan	bite um Ergänzung/Bearbeitung	Such_Stefan	OK - Siete Kannentare	LCIII Empty Routing List, A,1	06/03/2008 12:03:13:669	Auf Seite 4+5 sind noch Unklariteiten +> an Fr. Ahrens zurüc
Ahrena_Heike	Zur Prüfung	Ahrena_Heike	OK	LCIII Empty Routing List, A,1	05/30/2008 08:01:44:900	
Ahrens_Heike	bite um Ergänzung/Bearbeitung	Ahrens_Heike	OK	LCIII Empty Routing List, A,1	05/30/2008 08:01:44:434	
Such_Stefan	Submitter Signature	Such_Stafan		LCIII Empty Routing List, A,1	05/03/2006 15:40:08:387	
Ahrens_Heike	Zur Prüfung	Ahrens_Illeike	OK	LCIII Empty Routing List, A,1	06/03/2008 15:40:07:304	
Ahrena_Heike	Submitter Signature	Ahrena_Heike		LCIII Empty Routing List, A,1	06/12/2008 09:48:52:677	
Schrader_Stefan	Durchbrüche überarbeitet	Schrader_Stefan	Night DK - Siehe Kommentare	LCIII Empty Routing List, A,1	06/12/2008 09:48:50:798	Nicht zuständig??
Such_Stefan	Durchbrüche überarbeitet	Such_Stafan	OK	LCIII Empty Routing List, A,1	06/03/2008 16:39:44:183	
Sueh_Stefan	Submitter Signature			LCIII Empty Routing List, A,1		
Ahrena_Heike	Zur Pröfung	Ahrena_Heike	OK	LCIII Empty Routing List,A,1	06/26/2008 10:51:30:274	
Cabela_Cesar	Zur Prüfung	Cabelo_Cesar	OK - Siete Kannentare	LCIII Empty Routing List, A,1	06/16/2008 08:47:36:014	Zuständig, Fr. Ahrens
Schulz_Carola	Zur Prüfung		Keine	LCIII Empty Routing List, A,1		
Sueh_Stefan	Submitter Signature			LCIII Empty Routing List, A,1		
Ahrena_Heike	Zur Pröfung	Ahrena_Heike	OK	LCIII Empty Routing List,A,1	06/26/2008 09:59:41:038	
Cabela_Cesar	Zur Prüfung		Keine	LCIII Empty Routing List, A,1		
Schulz_Carola	Zur Pröfung		Keine	LCIII Empty Routing List, A,1		
Ahrens_Heike	Submitter Signature			LCIII Empty Routing List, A,1		
Schulz_Carola	bite um Korrektur DANKE		Keine	LCIII Empty Routing List, A,1		
Such_Stefan	bitte um KorrekturDANKE		Keine	LCIII Empty Routing List, A,1		
Ahrenz_Heike	Submitter Signature	Ahrena_Heike		LCIII Empty Routing List, A,1	06/27/2008 11:04:16:639	
Dest_Per_IG	Bitte um Genehmigung Danke	Dest_Per_IG	OK	LCIII Empty Routing List, A,1	06/27/2008 11:04:13:558	
Ahrena_Heike	Submitter Signature			LCIII Empty Routing List, A,1		
Jest_Per_IG	durchbruch ergänzt	Dest_Per_IG	OK	LCH Empty Routing List, A.1	06/30/2008 16:03:47:566	
Sueh_Stefan	durchbruch ergeinzt		Keine	LCH Empty Routing List A.1		

 Day 10: Trades deliver changed placeholder models to the 3D CAD QA Team

3D CAD QA team checks model for defects, positions and nomenclature.

After successful checks, the entire model is updated and released.

11

Demonstration

Stefan Sühl WP40, DESY XFEL Workshop, 23.09.2008

12

