MDI Developments Report from ALCPG'11 in Oregon

Karsten Buesser DESY

ILD Regional Integration Workshop LAL Orsay 19. April 2011

MDI Work Flow

MDI Work Flow

ILD and SiD Differences

SiD and ILD with or without a platform ?....

Trade offs

Trade off study

SiD on Platform

ILD without Platform

Mandatory requirements	SiD	ILD
Design Change Impact	None	High
Vibrations Amplification	Unkwon	Unkwon
		M. Oriunno 13

Vibrations

Most acute luminosity loss mechanism due to relative jitter of final focusing magnet elements : <u>Ground Motion and Mechanical vibration sources</u>

ILC has Active Fast Feedback based on beam trajectory after collision

Max. Integrated displacement:

50 nm > 5 Hz

Lumi loss due to beam offset in SD0 (beamsize growth) and IP misalignment of beams

QD0 Support Models

ILD QD0 Support Vibration Analysis

K. Buesser 2010年 3月 29日 月曜日

MDI Developments

SiD Vibration Analysis - No Platform

SiD Vibration Analysis - with Platform

Vibration Measurements at CMS Plug

Platform Vibration Amplification

Integrated Displacement (r.m.s.)

Marco's Conclusions

Conclusions

- Platforms are a technically acceptable solutions for the push pull, which preserves the respective design of the detectors and does not amplify the ground vibrations.
- The platforms must be designed according to a set of Functional Requirements, specifying the static and dynamic performances. These requirements will be defined by the detectors.
- The design and construction of the platforms becomes a task of the CFS group, which will develop the project along the requirements list and together with the detectors.

SiD Platform Functional Requirements

SiD nominal mass: Barrel 5000 T; (each) Door 2500 T

Dimensions:

Z = 20.0 mX = 20.0 m Delta Y = 9 m (Top of Platform to beamline)

Positioning Tolerance on beamline

Consider points Z=+-max, X=0. Position to + 1mm wrt references in X,Y,Z Consider points Z=+-max, X=+-max: Position to +- 1 wrt references in Y.

Static Deformations: <+-2 mm

Vibration budget < 50nm between 1 and 100 Hz, at the QD0's (relative)

Seismic stability: Appropriate for selected site. (Beamline must be designed with sufficient compliance that VXD will survive)

SiD Platform Functional Requirements

Wall clearance ~10 mm. Platform comes to side wall, there is no apron or apron matches platform elevation.

SiD Platform Functional Requirements

Detector on platform Top View

Platform Top View

Surface Features: Steel Surface near legs Steel rails for doors "Receptacles" for tie seismic tiedowns of SiD Barrel and Doors Removable Safety railings

SiD Platform Functional Requirements

Transport equipment shall not eject particulates that reach platform surface (need spec on how much)

Magnetic Field on Steel Floor

CST EM STUDIO

09/08/2010 - 09:30

- Simulation with steel layer on platform
- Large induced magnetic fields! Might have consequence on reinforcements in concrete?

SiD Proposal on Platform Movement

Gripper Jacks on rail

Luminosity Simulations (G. White)

Simulation Overview

- Lucretia simulation of ILC BDS
 - ILC2006e (RDR) lattice and beam parameters
 - Reduce Nb 2625 -> 1320 for luminosity calculation with fast feedback to more closely mimic SB2009 parameter set
 - Electron and positron beamlines
- Ground motion applied to all ILC elements plus transfer function (TF) between ground and QD0/SD0/OC0 system.
- 50 consecutive pulses (10s) modelled with ground motion + pulse-pulse feedback.
 - Results shown for GM models 'A', 'B' and 'C'
 - QD0 system TF calculation for SiD "rigid support from platform" (Marco).
- Fast IP position feedback for tolerance estimates.
- Simplifications
 - RTML and Linac excluded from tracking simulation
 - Incoming beam perfectly aligned with first element (upstream FFB)
 - No intra-pulse misalignments
 - No other mechanical noise model of magnets applied

Luminosity Simulations (G. White)

Simulation Parameters

- Initially perfect lattice.
- BPMs
 - Cavity systems throughout BDS
 - Resolution = 100nm
 - Scale factor error = 1%
 - Stripline BPMs for fast feedback
 - Resolution = 2um
 - Scale factor error = 1%
 - Corrector magnet field errors 0.1%
- 5 Hz feedback
 - Simple gain feedback, convergence 50 pulses
- Intra-pulse feedback
 - Based on detection of beam-beam kick at IP for small offsets using downstream stripline BPM and correction using stripline kicker system between QF1 & QD0 cryomodule systems
 - Feedback is PID controller using linearised look-up of beam-beam kick to IP beam offset model (up to turn-over point). Feedback convergence ~20 bunches for offsets left of turn-over point.

IP Region Final Doublet

G. White

Ground Motion Spectra

- The simulation applies offsets due to ground motion according to Model 'A', 'B' or 'C'
- The spectra for these models indicative of 'quiet', 'average' and 'noisy' sites, mainly in terms of the magnitude of high frequency noise, are shown above

G. White

"Realistic" Transfer Function for QD0

QD0 TF

- "Rigid support structure" model from SiD group (Marco). QD0 rigidly attached to detector platform.
- Apply to simulation girder element attached to SD0/OC0/QD0 cryomodule.

G. White

Vertical Offsets at IP with Feedback Systems on

GM Induced Jitter @ IP (Vertical Offset between e- and e+ beams at IP) with and without QD0 TF

K. Buesser

MDI Developments

Luminosity Loss vs. QD0 Jitter

- Data shown gives % nominal luminosity for different levels of uncorrelated QD0 jitter.
 - 100 pulses simulated per jitter cases with FFB
 - Mean, 10% & 90%
 CL results shown for each jitter
 point from 100
 pulse simulations
- Tolerance to keep luminosity loss <1% is <50nm RMS QD0 jitter. G. White

Task 1 - The design of the underground concrete platforms required to transport each of the two Linear Collider Detectors on and off the beam-line position.

- Two platforms would be required, one for each detector.
- Load of each detector, excluding platforms, of approximately 14,000tons
- Intermediate supports determined by the preferred movement system.
- Platform movement on/off the beamline to be moved over a period of the order of five hours,
- Up to 20 movements per year during machine operation.
- Accelerations of the detector during movement to be limited to 0.5g
- Location of the platforms to within +/-1mm and +/-0.1 milli-rads of their target location relative to final focus quadrupole base slab.

ARUP's were asked to tender for 4 distinct tasks

Air pads v Rollers for concrete platform movement will be further analysed

Task 2 - A detailed study of the potential behaviour of the rock mass surrounding the experimental area during the estimated 20-year life span of the machine.

- Experience from other cavern rock related mass conditions should be taken into account e.g LHC.
- 2D and 3D effects to be assessed.
- The study should assume that the experimental area is to be built in CERN geology, in the Molasse Rock
- The long-term behaviour of the excavation

10

2d and 3d models will be developed for CLIC to do a "Time-dependant" state analysis. Possible 2nd phase use of these models for ILC layouts/geology.

MDI Developments

Task 3 - Passive isolation slab design

- Required maximum relative rms displacement of the beams is 0.1nm.
- Below 4Hz, vibration can be mitigated by active systems through steering the beam.
- Provide passive isolation at the end of each accelerator tunnel, where the beams emerge from the tunnel before entering the detector.
- Slab could be approximately 50 100 tons of concrete, resting on several springs and dampers – this will be assessed through our evaluation, as outlined below.

Task 4 - Review of the Experimental Area design

- Layout of the shafts/cavern based on available geotechnical information and current space proofing.
- Review of suitability of various strata depths for cavern location

12

Budget for this Linear Collider IR study needs to be sourced :

• Possible cost sharing CERN & Fermilab

Some key decisions for ILC to resolve first, in order to allow a more 'useful' study :

- Are both detectors using the "concrete" platform strategy
- Are the level of the platforms the same
- For the overall layout :
 - Gantry crane capacity in the experimental hall
 - Should shafts be directly over the cavern or offset
 - Self shielding detectors

Budget for this Linear Collider IR study needs to be sourced :

• Possible cost sharing CERN & Fermilab

Some key decisions for ILC to resolve first, in order to allow a more 'useful' study :

- Are both detectors using the "concrete" platform strategy
- Are the level of the platforms the same
- For the overall layout :
 - Gantry crane capacity in the experimental hall
 - Should shafts be directly over the cavern or offset
 - Self shielding detectors

More about experimental hall: this afternoon.....

Platform Based Detector Motion System

Alain Hervé, CLIC08 Workshop, 16 October 2008

Now common working assumption

5

From M. Oriunno @ SiD workshop 2010 after CERN workshop

- Beam height difference between SiD and ILD: 1.6m
 - This results in different floor levels in the underground hall

Barrel yoke modification

- Endcap yoke is more problematic
 - Split endcap design gets complicated

Possible configuration of feet and airpads

- Reducing difference to 0.6m
 - Maybe even less if yoke instrumentation design will be changed

Summary

- Important milestone has been reached in time:
 - Common working assumption is a platform based detector motion system
- A lot of work has been done to reach that conclusion, most of it in friendly collaboration with SiD and the GDE
- Need to look at platform requirements (c.f. SiD)
- Need to synchronise with the CFS work on the underground hall and the push-pull system
 - more on the hall later today
- We have many ongoing tasks for ILD, the progress is however resourcedriven, not task-driven...