HadronSelection Processor

for software compensation study

Marina Chadeeva, ITEP

Marina Chadeeva, ITEP

Analysis meeting, 18^{th} of April, 2011

1

Motivation

Preparation of the first paper about AHCAL energy resolution for hadrons

- What we already have in hands:
 - results on AHCAL EM response, EM calibration and EM energy resolution
 - two techniques of software compensation for AHCAL published in CAN
- To be presented in this meeting:
 - processor for hadron event selection (Marina)
 - discussion and results of run set selection (Katja)
- What follows:
 - application of software compensation techniques to selected runs
 - paper about hadronic resolution and software compensation

Processor chain

...CALICE calibration processors (v04-01)...

ExtractBeamEnergyProcessor (Katja Seidel)

(extracts beam energy and particle type from database and appends it to event info)

MultiBitGenerator

(sets MultiAmplitude parameter)

eventSelector (David Ward)

(selects events by trigger bits required - beam trigger ON used)

$\stackrel{\Downarrow}{\textbf{HadronSelection}} (Marina Chadeeva)$

(rejects empty, muon, multiparticle and not identified events)

MappingProcessor & CellNeighboursProcessor (Beni Lutz)

(fill cell neighbours map)

Software Compensation (Marina) Software Compensation (Katja) (prepare root trees for software compensation study)

3

Hadron selection scheme (by Vasiliy)

Electron identification: not implemented yet

4

 $N_{HCAL} > 25 \qquad \textbf{AND} \qquad N_{TCMT} > 10$ $\textbf{AND} \qquad \textbf{inside triangle on } (E_{reco}^{ECAL} + E_{reco}^{HCAL}) \textbf{ vs. } E_{reco}^{TCMT} \textbf{ plane with vertexes:}$ $(0.6 ; 0.2) (0.4 \cdot E_{beam} + 1. ; 1.3) (1.3 ; 0.4 \cdot E_{beam})$ $\textbf{AND} \qquad \textbf{track found}$

 \mathbf{MC}

muon run

pion run

Efficiency of muon identification at 10 $\,{\rm GeV}$

Only muons going through ECAL are considered: $N_{ECAL} > 15$.

Data MC Number of events Number of events Muon QGSP_BERT 10 GeV Muon run 330932 10 GeV 10^{3} All inside ECAL All inside ECAL Selected 97.2% Selected 98.0% 10^{2} 10 0 5 2 3 4 6 8 2 3 4 5 6 7 8 9 E_{reco}/GeV E_{reco}/GeV Efficiency: $\sim 97.2\%$ Efficiency: $\sim 98.0\%$ Inefficiency for right tail: <1.5%Inefficiency for right tail: <2%

Efficiency of muon identification at $80~{\rm GeV}$

For 32-GeV MC sample efficiency is $\sim 99.5\%$ and inefficiency for right tail is $\sim 0.5\%$

Fractions in 10-GeV π^- runs

Marina Chadeeva, ITEP

Number of events

Analysis meeting, 18^{th} of April, 2011

Marina Chadeeva, ITEP

Fractions in 80-GeV π^+ and π^- runs Number of events 2500 2000 events run 331324, 80 GeV run 330392, 80 GeV 3500 All All Muon Muon Jo 3000 2500 Not identified Not identified Cher ON (π^+) Cher OFF (proton) Cher ON (e) Cher OFF (π) 2000 1500 1500 1000 1000 500 500 E 0 00 60 70 80 90 100 60 70 80 90 20 30 40 50 20 30 40 50 100 10 10 E_{reco}/GeV E_{reco}/GeV Number of events Number of events π⁺ run 331324, 80 GeV π⁻ run 330392, 80 GeV All All Muon Muon 10^{3} 10^{3} Not identified Not identified Cher ON (e) Cher OFF (π) Cher ON (π^+) Cher OFF (proton) 10² 10² 10 10 0 60 90 100 0 60 70 80 90 100 10 20 30 40 50 70 80 10 20 30 40 50 E_{reco}/GeV E_{reco}/GeV

Marina Chadeeva, ITEP

Examples of selection statistics

Run #	E_{beam}, \mathbf{GeV}	Empty	Muon	Mult	Not ID	Cher ON	Cher OFF π^-
330332	10	0.17%	$\mathbf{6.56\%}$	0.12%	$\mathbf{3.94\%}$	$\boldsymbol{26.93\%}$	$\mathbf{62.27\%}$
330850	10	3.05%	6.32%	0.12%	20.71%	$\mathbf{21.92\%}$	$\boldsymbol{47.88\%}$
330326	20	0.02%	6.10%	0.42%	4.00%	13.20%	76.26%
330960	35	0.003%	17.64%	0.82%	1.06%	2.67%	77.81%
330412	40	0.01%	5.04%	0.89%	2.07%	45.38%	46.61%
330558	50	0.01%	4.66%	1.10%	0.54%	0.22%	93.47%
331568	60	0.005%	3.84%	0.78%	$\mathbf{2.64\%}$	0.44%	92.29%
330392	80	0.01%	3.50%	1.79%	0.33%	$\mathbf{24.63\%}$	69.73%

Run #	$E_{beam},{f GeV}$	Empty	Muon	Mult	Not ID	Cher ON π^+	Cher OFF
331298	30	0.04%	30.27%	0.36%	0.96%	40.52%	27.85%
331339	40	0.01%	4.55%	0.57%	0.43%	76.60%	17.84%
331335	50	0.01%	4.38%	0.67%	0.34%	78.90%	15.70%
331334	60	0.01%	3.77%	0.82%	0.40%	$\boldsymbol{74.60\%}$	20.40%
331324	80	0.01%	2.74%	1.14%	0.35%	$\boldsymbol{63.51\%}$	32.26%

Marina Chadeeva, ITEP

Analysis meeting, 18^{th} of April, 2011

Conclusions

- HadronSelection processor was developed to reject empty, muon and multiparticle events. It was tested on CERN 2007 test beam data samples in the energy range from 10 to 80 GeV.
- Muon selection procedure was adjusted using real and MC muon samples. For selected pion samples a muon admixture is estimated to be $<\!0.5\%.$
- HadronSelection processor creates an additional collection that includes:
 - Cherenkov trigger value for further electron or proton separation;
 - found shower starting layer;
 - -x and y coordinates of primary track (if found);
 - 6 energy sums in MIPs for all calorimeter parts.
- For compensation study only events with shower start at the beginning of HCAL and track in ECAL are used.

Backup slides

Structure of muon runs

In data runs >70% of muons are outside ECAL.

Simulated muons

Simulated muons are mostly going through ECAL.

Efficiency for 32-GeV simulated muons

For 32-GeV MC sample efficiency is $\sim 99.5\%$ and inefficiency for right tail is $\sim 0.5\%$

Examples of rejected events for 10 GeV π^-

Event with high front noise rejected as multiparticle.

Event with deposition >3000 MIP (>18 GeV) rejected as multiparticle.

Examples of rejected events for 10 GeV π^-

Event with parallel ingoing track candidates found rejected as multiparticle.

Event with shower start far in ECAL but without primary track found rejected as not identified.

18

Marina Chadeeva, ITEP