
Towards LCIO 2.0
Improving the EDM and the I/O

Frank Gaede, DESY
Software WG Phone meeting

DESY, March 30th, 2011

Fr
an

k
G
ae

de
,
SW

 W
G
 P

ho
ne

 M
ee

ti
ng

,
M

ar
 3

0,
 2

01
1

2

LCIO repository moved to SVN
http://java.freehep.org/svn/repos/lcio/list/

checkout released versions:
svn co svn://svn.freehep.org/lcio/tags/v01-51-02 v01-51-02
checkout HEAD version:
svn co svn://svn.freehep.org/lcio/trunk trunk

old CVS still works for checkout of released versions !

svn webinterface:

Fr
an

k
G
ae

de
,
SW

 W
G
 P

ho
ne

 M
ee

ti
ng

,
M

ar
 3

0,
 2

01
1

3

LCIO 2.0 - new features
LCIO 2.0 (AKNA LCIOv2) is planned for some time now

goal is to improve LCIO while still being backward compatible

planned/requested features:

direct access to events -> Done

partial reading of events -> ?

splitting of events over fles -> ?

storing of (arbitrary) user classes –> currently not planned

simplify using LCIO with ROOT -> Done
(ROOT macros, TTreeViewer, I/O (?) ,...)

improving the event data model -> Under Way (this talk)
(1d,2d hits, tracks/trajectories)

Fr
an

k
G
ae

de
,
SW

 W
G
 P

ho
ne

 M
ee

ti
ng

,
M

ar
 3

0,
 2

01
1

4

direct access to LCIO events

direct access to LCIO events:
overlay of random background events
physics analysis – reading of pre-
selection
previously only via fast skip or
creation of TOC on opening (slow)
→ introduced two additional records
LCIORandomAccess/LCIOIndex

records written at end of fle on close()
can append to fle
can add direct access to existing fle
if opened in append mode on writable fle system (not tape)

released in v01-51

Fr
an

k
G
ae

de
,
SW

 W
G
 P

ho
ne

 M
ee

ti
ng

,
M

ar
 3

0,
 2

01
1

5

 a ROOT dictionary for LCIO
LCIO now comes with a ROOT dictionary for all LCIO
classes (optional) - with this one can:
use LCIO classes in ROOT macros

write simple ROOT trees, e.g. std::vector<MCParticleImpl*>

use TTreeDraw for quick interactive analysis of LCObjects:
//---gamma conversions:

TCut isPhoton("MCParticlesSkimmed.getPDG()==22") ;

LCIO->Draw("MCParticlesSkimmed._endpoint[][0]:

 MCParticlesSkimmed._endpoint[][1]",isPhoton) ;

write complete LCIO events in one ROOT branch

see: $LCIO/examples/cpp/rootDict/README for details & help

-> we are interested in feedback from the users if
this provides already the requested features

Fr
an

k
G
ae

de
,
SW

 W
G
 P

ho
ne

 M
ee

ti
ng

,
M

ar
 3

0,
 2

01
1

6

partial reading & splitting of events
would be needed for performance and cost (disk space) :
read only objects of interest in analysis (PandoraPFOs)
store simulation and reconstruction output in separate fles

main obstacle: need pointer/reference mechanism across I/O
records and fles, e.g. with index based pointers independent
of I/O, e.g.:
long64 index = HASH(collName) << 32 | collIndex

non trivial change to LCIO/SIO

might not have the manpower to do it now

-> could have 'workaround' for ILD DBD production: split SIM
and REC fles and have dedicated processor for merging:
tradeoff between usability and disk space
(need to keep SIM and REC fles in synch and always read both...)
SIM: ~1MByte/had. evt -> 1TByte / 1M had. evts

Fr
an

k
G
ae

de
,
SW

 W
G
 P

ho
ne

 M
ee

ti
ng

,
M

ar
 3

0,
 2

01
1

7

plans for next release
as discussed at

LCIO developers meeting after ALCPG
(N.Graf, T.Johnson, S.Aplin, F.G.)

Fr
an

k
G
ae

de
,
SW

 W
G
 P

ho
ne

 M
ee

ti
ng

,
M

ar
 3

0,
 2

01
1

8

cleanup of build systems

C++

remove old Makefles – have CMake only

Java

remove old ant scripts

have Maven only

-> include Maven in release
no dependency for C++

-> Maven plugin for creating header fles only once
interesting for developers - (no rebuild after install)

Fr
an

k
G
ae

de
,
SW

 W
G
 P

ho
ne

 M
ee

ti
ng

,
M

ar
 3

0,
 2

01
1

9

extensions of MCParticle
add spin information:
foat[3] getSpin()

add color fow information
int[2] getColorFlow()
are these pointers to other MCParticles (indices) ?

-> both copied from stdhep/HepEvt4 as written by Whizzard

user request:
have simProcessId for particles that decayed in simulator
-> will use lower 16 bits of SimStatus word + collection parameters:
SimProcessID, SimProcessName
short getSimProcessID()
need to defne details of processIDs
implement this in Mokka and SLIC the same way

Fr
an

k
G
ae

de
,
SW

 W
G
 P

ho
ne

 M
ee

ti
ng

,
M

ar
 3

0,
 2

01
1

10

Meta data in event

MC truth information from generator:
processID

processName

alphaQCD

alphaQED

store as collection parameters in LCEvent
to be implemented in StdHepReader and Mokka/SLIC

will be documented at:
https://confuence.slac.stanford.edu/display/ilc/LCIO

other meta information needed ?

Fr
an

k
G
ae

de
,
SW

 W
G
 P

ho
ne

 M
ee

ti
ng

,
M

ar
 3

0,
 2

01
1

11

Track – multiple track states
agreed to store multiple track states for Track:
@IP, frst hit, last hit, face of calorimeter, others ?

will introduce TrackState object and
TrackStateVec& getTrackStates()

TrackState will have: original functions getX()
of Track will return:

trk.getTrackStates()[0].getX()

Fr
an

k
G
ae

de
,
SW

 W
G
 P

ho
ne

 M
ee

ti
ng

,
M

ar
 3

0,
 2

01
1

12

Track – multiple track states
isReferecePointPCA() will be dropped !
all track states should have the reference point chosen such that this is
where the track is defned, i.e. at the closest hit, the IP or the face of
the calorimeter (in this case, d0 and z0 are typically 0)

introduce:
int TrackState::getLocation()
with defned constants/enums:
AtIP, AtfFirstHit, AtLasthit, AtCalorimeter, AtVertex, Other

convention that TrackStates are ordered wrt. path length s –
as seen from the IP !

add convenient method:
TrackState* getClosestTrackState(foat x, foat y, foat z)
TrackState* getTrackState(int location)

returns track state for location with given enum – or NULL

frst and last hit position available through
trk->getTrackState(AtFirstHit / AtLastHit)->getReferencePoint()

Fr
an

k
G
ae

de
,
SW

 W
G
 P

ho
ne

 M
ee

ti
ng

,
M

ar
 3

0,
 2

01
1

13

Tracker-and CalorimeterHit
canonical way of accessing layer number:
local to sub detector (inside-out, starting from 0)
getLayerNumber(), setLayerNumber()
flled from cellIDs after reading, write to cellID

need convention: string “layer” in CellIDEncoding
if “layer” not present – layerNum = -1 (deal with this in Marlin/org.lcsim)
will update SLIC and Mokka accordingly

add cellIDs to TrackerHit:
getCellID0(), getCellID1() (-> same as in CalorimeterHit)
 use cellID for consistency w/ CaloHit – even though there are no cells
drop old 'type' word and replace getType() with access to cellID[“type”]

question: convention for subdetectorIDs in cellIDs ?
-> this will probably have to be done on a per concept (detector) basis
-> need convention for ILD for DBD reconstruction

Fr
an

k
G
ae

de
,
SW

 W
G
 P

ho
ne

 M
ee

ti
ng

,
M

ar
 3

0,
 2

01
1

14

additional extensions

to Cluster add

foat getEnergyError()

to SimCalorimeterHit optionally add the position
where the energy deposition (step) occurred:

foat[3] getStepPosition(int i)
only if fag LCIO.CHBIT_STEP==1
useful for detailed simulation studies of edge effects in calorimeter
cells or MAPS digitization

any other requests ?

Fr
an

k
G
ae

de
,
SW

 W
G
 P

ho
ne

 M
ee

ti
ng

,
M

ar
 3

0,
 2

01
1

15

1d and 2d hits
agreed to introduce six new TrackerHit classes
PlanarDisk1D
Planar1D
Cylindrical1D
PlanarDisk2D
Planar2D
Cylindrical2D
have u, du, pos1, pos2 (strip begin end) for 1D
have u, v + cov(u,v) + cylinder/plane parameters for 2D

details currently defned (N.G.)

probably these will also implement TrackerHit interface
(x,y,z, cov) for backward compatibility

this will make it possible to properly take Si-strip detectors
into account in the tracking (if manpower allows)

Fr
an

k
G
ae

de
,
SW

 W
G
 P

ho
ne

 M
ee

ti
ng

,
M

ar
 3

0,
 2

01
1

16

discussed common DST format

ILD DSTs:
ReconstrucedParticles (PFOs)

Tracks

Cluster

MCParticlesSkimmed

LCRelation PFOs <-> MCTruth
via Tracks and Clusters or directly

2-6 JetCollections with Flavour tag

SID interested in having a common defnition of the
DST format for the DBD

-> could simplify collaboration on physics analyses

Fr
an

k
G
ae

de
,
SW

 W
G
 P

ho
ne

 M
ee

ti
ng

,
M

ar
 3

0,
 2

01
1

17

Summary
made quite some progress towards LCIO 2.0

already in v01-51:
direct access to events and ROOT dictionary

now defned all the planned extensions/improvements
to the EDM:
MCParticle: spin and color information

Tracks (multiple track states), TrackerHits 1D/2D

Tracker/CaloHits: getLayer()

...

hope to have beta release in a few weeks

now is the time to make additional requests if
needed for the DBD

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

