The Progress of SDHCAL In ILD Software

Ran Han , Gerald Grenier (IPNL) Gabriel Musat, Manqi Ruan (LLR)

Outline

GRPC Digitization

Cosmic data->Standalone G4 Simulation->Comparison with TB \rightarrow Implant in Marlin

Mechanism Development

GRPC @ Videau Modle && Tesla Modle

> PFO Energy Reconstruction

--singl_{K⁰₂} events @ Videau/Tesla, Digital/Semi-Digital 1cm/3cm pads, GRPC/Sci,

--uds events for AHCAL/SDHCAL based on Tesla Model

Ongoing Study

Neutral Network, Tracking and Clustering , PFO Algorithm

Part I -- GRPC Digitization

- Getting the Charge Distribution from Cosmic Rays
- Fitting the Distribution and Feed Parameters to Standalone Geant4 Simulation
- Comparing Simulation with Testbeam Data in Multiplicity and Efficiency
- Implanting Digitization Process to Marlin Processes, Using accumulated charge in one cell

Charge Distribution of Cosmic Data

Standalone Simulation and Test Beam Comparison

Implant Digitization in Marlin

- 1- Setup new Digitization for GRPC: SimpleGRPCDigitization
- 2- Sum charges of multiply particles in one cell
- 3- Energy saved in SimcalrometerHits \rightarrow Charge saved in HCALCarlormeterHits

Part II – ILD Simulation MOKKA

The Geometry of HCAL in Mokka

The Process of RPC Implantation in Tesla Model (used to only Vieadu model)

Validation with Muon Events

Two ILD-HCAL Models in Mokka

Videau

Driver: ~/Mokka/source /Geometry/LDC/ SHcalRPC01— ONLY GRPC

Tesla

SHcalRPC02 BOTH GRPC and SCI

8

100GeV Muon Events Geometry: Stave && Module 24000

Energy Scan Digital vs Semi-Digital

Energy Scan 1cm vs 3cm for SDHCAL

Energy Scan Videau vs Tesla

AHCAL vs SDHCAL qqbar

AHCAL

Jet Energy	raw rms	rms ₉₀	$\text{rms}_{90}/\sqrt{E_{jj}/\text{GeV}}$
$45 \mathrm{GeV}$	$3.3{ m GeV}$	$2.4\mathrm{GeV}$	25.0 %
100 GeV	$5.8{ m GeV}$	$4.1 \mathrm{GeV}$	29.5 %
$180 { m GeV}$	$11.2{ m GeV}$	$7.5{ m GeV}$	40.1%
45GeV 100GeV 180GeV	4.07 7.80 16.8	3.13 5.90 11.0	33.0% 42.7% 58.8%
SDHCAL 45GeV 100GeV 180GeV	4.10 7.81 17.8	3.20 6.04 12.0	34.5% 43.4% 64.0%

1- ILD MC Simulation

Global Detector Model(ILD00,IDL01), AHCal Driver(SHcalSc02,SHcal03) Physics List

17

2- MARLIN-Pandora Process Optimization Constants

Why SDHCal Can't Reach (ILD simulation)

Ongoing Study

Fast Guess 1- Optimization factor in Pandora not suit for HCAL driver I am using

2- Optimization factor in Pandora not suit for our digitization process

3- Pandora is not the case for 3-Thresholds

SDHCAL Comparable with AHCAL, and should be get better after Gerald developing Pandora for SDHCAL

Part IV – PFA Development

 Use Neutral Network to find the best constants for energy reconstruction

Tracking /Clustering Hough Transform/Minimum Spanning Tree

Open Pandora –implant algorithm in for SDHCAL

Energy Resolution

To determine the energy a Neural Network can be very helpful

INPUTS : Number of pads with 1st,2d and 3d threshold (N_1, N_2, N_3)

Additional inputs taking into account the shower shape and its extension as well as shower density distribution are being studied

Tracking and Clustering

Tracking, clustering algorithms

Hough Transform : find MIP inside the hadronic shower and use them to calibrate/control the detector

x:y:z {tag>0}

90

80

70 60

50

Minimum Spanning Tree :

→Powerful tool to connect clusters

into appropriate branches.

from hadronic contribution

Summary

Realistic simulation of GRPC Properties Digitization Process

GRPC has both Videau and Tesla Model

Pandora Reconstruction

- **1-** SDHCAL > DHCAL @ High Energy
- 2- 1cm pad size > 3 cm pad size for SDHCAL
- **3-** Tesla .vs. Videau NO BIG DIFFERENCE
- **4-** AHCAL .vs. SDHCAL ongoing study

What is in Layers (geantino)

0

-		-844 -1.9e+03	365	4e+04
2	-	853 -1.92e+03	369	4e+04
}	-	853 -1.92e+03	369	4e+04
ł	-	853 -1.92e+03	369	4e+04
Т	ra	ansportation		
		-853 -1.92e+03	369	4e+04
5	-	854 -1.92e+03	369	4e+04
7	-	854 -1.92e+03	370	4e+04
}		-855 -1.92e+03	370	4e+04
)		-855 -1.92e+03	370	4e+04
.0		-855 -1.92e+03	370	4e+04
.1		-855 -1.92e+03	370	4e+04
.2		-856 -1.93e+03	370	4e+04

2.	11e+03 2.11e+03 BarrelHcalModule Transportation
)	21.8 2.13e+03 physiRPCFree Transportation
)	0.402 2.13e+03 physiRPCmylarCathode Transportatio
)	0.196 2.13e+03 physiRPCGraphiteCathode
0	0.0544 2.13e+03 physiRPCThickGlass Transportation
)	1.2 2.13e+03 physiRPCGap Transportation
)	1.31 2.14e+03 physiRPCThinGlass Transportation
0	0.761 2.14e+03 physiRPCGraphiteAnode Transportat
0	0.0544 2.14e+03 physiRPCmylar Transportation
0	0.0544 2.14e+03 physiRPCPCB Transportation
0	1.31 2.14e+03 physiRPCElectronics Transportation
0	1.74 2.14e+03 BarrelHcalModule Transportation

Digital: 0.2pC; CalibrHCAL= CalibrHCAL=0.10503 Semi-Digital 0.4pC, 4.8pC, 15pC ;CalibrHCAL= 0.1507272 0.0550067 0.5565631

Size changes

SDHCAL Hcal_total_dim_y=1287 Hcal_outer_radius = 3227 AHCAL Hcal_total_dim_y=1181.4 Hcal_outer_radius = 3121.4 1287 -1181.4=3227-3121.4= (6.5-4.3)*4

< - Yoke_barrel_inner_radius =
4440.0297851562
> - Yoke_barrel_inner_radius =

4332.3601074219 Hcal_Coil_aditional_gap=29.5

HCAL endcap rings will have 5 layer HCAL endcap rings will have 6 layers.