

Report on the 9mA program

John Carwardine 13th April, 2011

• Parallel session on 9mA studies at ALCPG, four presentations:

- Carwardine: Results of the 9mA studies in Feb 2011
- Grecki: Detuning compensation during the 9mA studies
- Branlard: Results from 9mA studies on achieving flat gradients with beam
- Chase: preparing for future 9mA studies

Data Acquisition System access / analysis

- Enhanced data browsing tool: beta version was released to a small group for testing
- Working on setting up a mirror for the 9mA studies data at either Fermilab or Argonne to give more convenient access for data analysis
- Long Bunch-trains Workshop has been announced (at DESY, 6-8th June)
- Only two additional 9mA studies periods are likely before the end of 2012 (Spring and Autumn 2012)
 - Assessing progress towards the TDP R&D Goals for 9mA studies...

- The '9mA' programme remains a central theme of the workshop, but in keeping with the broader issues of the challenges of operations with long bunch-trains and the spirit of the first meeting, this workshop will also focus on specific issues relevant to FLASH VUV-FEL and future European XFEL operations
- Unlike the first workshop, this meeting will be entirely plenary with no parallel working groups
- The time will be divided into sessions dedicated to the following themes:
 - 1. Results from 9mA studies on controlling cavity gradient slopes
 - 2. Preparing for future 9mA studies
 - 3. Feedback control of longitudinal phase space
 - 4. Concurrent operation modes for FLASH and FLASH2
 - 5. Machine protection for long bunch-train operation
 - 6. Beam-based feedback and rf field-control

Tentative timetable for Long Bunch-trains workshop: (at DESY, June 6-8, 2011)

	Monday	Tuesday	Wednesday
09:00 – 10:30	DAQ tools tutorials?	Feedback control of longitudinal phase space	Machine protection
11:00 – 12:30	DAQ tools tutorials?	Feedback control of longitudinal phase space	Concurrent modes for FLASH and FLASH2
14:00 – 15:30	Opening Session (13:30 – 15:30) •Welcome (10min) •Long bunch train operations at FLASH (40min) •Photon science operations with long bunch trains (20min) •Scope/Goals for WS (20min)	9mA studies analysis and results	9mA future studies
16:00 – 17:30	9mA studies analysis and results	9mA future studies	Closing session
		Workshop Dinner	

Webex will be available

Workshop site: <u>http://indico.desy.de/conferenceOtherViews.py?view=standard&confld=3007</u>

- Feedback control of longitudinal phase space
 - TBA
- Operations modes for FLASH2
 - TBA
- Machine protection for long bunch-train operation
 - S. Schreiber + N. Walker
- Results and analysis from 9mA studies in February 2011
 - M. Ross + M. Grecki
- Looking toward future 9mA studies
 - J. Carwardine + TBA

TDP Phase 9mA R&D program

TDP R&D Plan (Rel.5): Studies and development activities

- Modeling of the cavity / HLRF/ power distribution / LLRF control system, including
 - 'Lorentz Force detuning' and microphonics
 - Development of LLRF controls
 - Integration of high-power linac machine protection systems
 - Studies of needed RF power and cavity gradient overhead
 - Studies of long-term RF stability
 - Studies and demonstrations of ILC bunch compressor RF stability

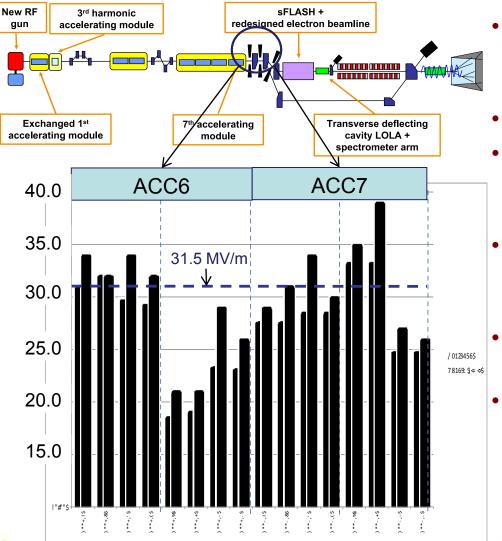
- Demonstrate principles of tailoring Pks/Qls to flatten cavity gradients with beam loading
- Module operation close to quench with ILC-like gradients & gradient spread and ILC-like beams

Next logical steps

- Flatten gradients on all 16 cavities with 6mA / 800us bunch-trains, including
 - Better control of systematic errors
 - Automated procedures for Pk/QI optimization
- 2. Operation of all 16 cavities within a few percent of quench with 6mA / 800us bunch-trains

Done, but not yet at maximum gradients and 9mA

Preparatory studies at NML...?



A list of questions from Marc...

- How will we meet 'S2' goals in general, and specifically the TDP RD goals?
- In general we won't be able to do it all what are the problems and limits?:
 - Cavity detuning measurement
 - Cavity gradient what do we miss with only limited high grad cavities?
 - Beam current what do we miss by having ½ nominal 9 mA?
 - Coupler performance
 - LDF compensation performance
 - Q-loaded adjustment control
 - Integral / proportional feedback; gain
 - What should we plan to do at FLASH, next run?
 - Other test facilities?
 - Dark current interaction with linac operation.
 - Data analysis what's been done? What is needed? What is basic? (svd?)

What about gradient...?

- ACC67 modules at FLASH have operating gradient spread around +/-25%
- Max. gradient: ~38MV/m
- Highest average gradient used during Feb 2011 studies was ~23MV/m
- There is good justification for extrapolating to ILC operating gradients
- Carefully consider gradient context of the next 9mA studies
- We <u>already</u> have experience cavities at the upper end of the TDP gradient range (38MV/m)

 Achieving flat gradients with up to 5mA was already expected to be quite difficult

Operations rationale

- Achieving stable long bunch-train operation at 3nC could have taken a large fraction of the 15 shifts available
- Much could still be learnt with beam current less than 9mA
- We operated in 'FEL Mode' with bunch charge up to ~1.7nC
- It was a good decision to not push for 9mA for this studies period
- An open issue for future studies: when (or whether) to push to get 9mA before the end of 2012 (personal view: stick to ~6mA)
 - Will take into account TDP baseline current + FLASH operations

February 9mA studies were very positive: bodes well for future studies periods

- Flawless operation of the FLASH accelerator
- Good progress towards TDP R&D goals
 - Achieved flat gradients +/-few % at 1.5mA 4.5mA
 - Gradient spreads up to 17-25MV/m
 - Lorentz-force detuning compensation with beam loading
- Significant operational experience, insight into practical issues:
 - Fine control of and repeatability of setting Loaded-Q
 - Absolute measurements: Loaded Q, Detuning
- TDP R&D goals for 9mA program are challenging, especially with such limited studies time – but significant additional progress can be made on (all) the key issues

.

13