Testbeam data analysis of a polarimeter Cherenkov detector

Parameter Scans

Christoph Bartels, Daniela Käfer, Annika Vauth daniela.kaefer@desy.de

Spin Management Meeting, DESY (Hamburg & Zeuthen) - April 14, 2011

Goal: find characteristics like photon-yield per electron, average number of reflections, asymmetry effects due to geometry a/o material

- gas: C_4F_{10} , threshold: 10 MeV
- wall reflectivities: λ -dependent!
 - \triangleright diamant-milled: $R\approx 85\%$
 - ▷ foil (0.3 mm): $R \approx 40\%$?
- all Cherenkov processes & all subsequent / secondary processes

multiple scattering, scint., ionisation, as well as reflection, refraction & absorption at surface & boundary areas

\Rightarrow Light distribution at photocathode!

Prototype Setup @ ELSA

Located in an external beam line:

- directly behind a dipole magnet (dumping the electron beam)
- fixated to a translation stage: movable in *x* and *y*
- tilt $\alpha_x \approx 7.5^{\circ}...7.8^{\circ}$
- tilt *a_y* adjustable via mount on turnable base plate
- tilt $\alpha_z \approx 0^\circ$ via spirit level

Testbeam Analysis & Simulations

A Load of Parameters

- \bullet Beam profile \rightarrow round Gaussian beam spot:
 - point-like beam spot with $\sigma_x = \sigma_y = 0.001$ mm (as reference)
 - and $0.1 \ldots 1.0$ mm in steps of 0.1 mm
- Reflectivity of inter-channel wall w.r.t. reflectivity of other walls: from 50% ... 100% (50% is lower limit)
- Detector alignment w.r.t. beam axis: shifts & tilts $\rightarrow 6$ param's
- Photodetector alignment w.r.t. channel: coverage/shifts/tilts

Get beam profile and relative reflectivities as accuratly as possible \Rightarrow Tune simulation to testbeam data \leftrightarrow iterative steps?!

Beam Profile: $\sigma_x = \sigma_y$

Daniela Käfer

Beam Profile: $\sigma_x = \sigma_y$

Pol.-Meeting

Reflectivity of the Inter-channel Wall

Daniela Käfer

Pol.-Meeting A

Apr.14, 2011

Testbeam Analysis & Simulations

5/16

Reflectivity of the Inter-channel Wall

Reflectivity of the Inter-channel Wall

Daniela Käfer

Pol.-Meeting

Apr.14, 2011

Testbeam Analysis & Simulations

5/16

Parameters II

- Beam profile: assumed as round Gaussian with $\sigma_x = \sigma_y = 0.5 \text{ mm}$
- Reflectivity of inter-channel: assumed as $R \approx 70\%$ or 80%

Now: start fine tuning detector alignment (& finally PD-alignment) Anode vs. channel coverage: PD shifts or tilts w.r.t. channel

- Detector alignment w.r.t. beam axis
 - shifts: (x, y) < 0.5 mm
 - tilts: $(\alpha_x, \alpha_y, \alpha_z) < (1.0^\circ, 0.5^\circ, 2.0^\circ)$
- Photodetector alignment w.r.t. channel: coverage, shifts, tilts

 Daniela Käfer
 Pol.-Meeting
 Apr.14, 2011
 Testbeam Analysis & Simulations
 6/16

Channel Illumination for diff. Beam Positions

Daniela Käfer

Pol.-Meeting Apr.14, 2011

Testbeam Analysis & Simulations

7/16

PD-anode vs. Channel Light Yield

Different tilt angles $\alpha_y \leq 0$:

- \rightarrow beam path lengths through the detector U-base vary
- \rightarrow different light path lengths
- \rightarrow more/less reflections
- ightarrow no defined plateau forms as for $lpha_y=0$

PD-anode vs. Channel Light Yield

Daniela Käfer

Simulation vs. Data (large SAPM)

Daniela Käfer

Pol.-Meeting

Apr.14, 2011

Testbeam Analysis & Simulations

9/16

Simulation vs. Data (small SAPM)

Simulation

Daniela Käfer

Apr.14, 2011

Testbeam Analysis & Simulations

zero

Simulation vs. Data (small SAPM)

Daniela Käfer

Data (small SAPM)

Apr.14, 2011

Testbeam Analysis & Simulations

zero

Simulation

zero

Simulation

Data (small SAPM)

zero

Simulation

Data (small SAPM)

zero

Parameters III

- Beam profile: assumed as round Gaussian with $\sigma_x = \sigma_y = 0.5 \text{ mm}$
- Reflectivity of inter-channel: assumed as $R\approx 70\%$ or 80%
- Detector alignment w.r.t. beam axis: not fully done, but...
- Photodetector alignment w.r.t. channel: coverage, shifts, tilts
 - shifts: (x, y) < 0.3 mm
 - tilts: $(\alpha_x, \, \alpha_y) < (1.0^\circ, \, 1.0^\circ)$ any PD-tilts only important for M64

Photodetector Shift w.r.t. Channel

zero

Photodetector Shift w.r.t. Channel

zero

Light Yield per Electrons (on Photocathode)

$$\mathsf{R} = 100\%$$

$$n
ightarrow n(\lambda)$$
 :

• slightly more photons

Fit with Poisson \otimes Gauss:

- pure Poisson fit not good
- add small Gaussian smearing
- improves χ^2 by factor pprox 10

Light Yield per Electrons (on Photocathode)

$$R = 100\%$$

$$R = 50\%$$

Light Distributions (on Photocathode)

$$R = 100\%$$

$$R = 50\%$$

Light Distributions (on Photocathode)

Data-Sim. Comparison w.r.t. Reflectivity

Simulation for: diff. inter-ch. wall reflectivities

Data-Sim. Comparison w.r.t. Reflectivity

Simulation for: diff. inter-ch. wall reflectivities

Comparison (data-sim.) normalised to "plateau" region

