Homework 1:

1. A) Make a non-relativistic approximation of the Hamiltonian

$$H = e\phi + c[m^{2}c^{2} + (\vec{p} - e\vec{A}/c)^{2}]^{7/2},$$

and show the equation of motion is indeed the Lorentz equation.

B) Repeat the derivation without the approximation.

2. In a rectangular coordinate system, given $A_x = A_y = 0$ and

$$A_{s} = -Re[\sum_{n=1}^{n} \frac{1}{n} (b_{n} + ia_{n})(x + iy)^{n}].$$

Derive a formula for corresponding magnetic field. How a_n and b_n are related in terms of placing the physical magnets for n=1, 2, ...?

- 3. Derive the six-dimensional transfer map for a defocusing (in x) quadruple. Extract its linear matrix and show it is indeed symplectic.
- 4. With the thin lens approximation, show that the maximum and minimum values of the β function for the simple FODO cell are given by

$$\beta_{max} = 2F\left(\frac{7+\sin(\mu/2)}{7-\sin(\mu/2)}\right)^{1/2},$$

$$\beta_{min} = 2F\left(\frac{7-\sin(\mu/2)}{7+\sin(\mu/2)}\right)^{1/2}.$$

Evaluate these for a quadrupole spacing of 100 m and phase advance per cell of 80°.

5. Given α , β at position s and the betatron tune ν in a ring, calculate the tune shift and β change due to a thin quadrupole at that position.