Homework 1:

1. A) Make a non-relativistic approximation of the Hamiltonian

$$
H=e \phi+c\left[m^{2} c^{2}+(\vec{p}-e \vec{A} / c)^{2}\right]^{1 / 2},
$$

and show the equation of motion is indeed the Lorentz equation.
B) Repeat the derivation without the approximation.
2. In a rectangular coordinate system, given $\mathrm{A}_{\mathrm{x}}=\mathrm{A}_{\mathrm{y}}=0$ and

$$
A_{s}=-\operatorname{Re}\left[\sum_{n=1} \frac{1}{n}\left(b_{n}+i a_{n}\right)(x+i y)^{n}\right] .
$$

Derive a formula for corresponding magnetic field. How a_{n} and b_{n} are related in terms of placing the physical magnets for $n=1,2, \ldots$?
3. Derive the six-dimensional transfer map for a defocusing (in x) quadruple. Extract its linear matrix and show it is indeed symplectic.
4. With the thin lens approximation, show that the maximum and minimum values of the β function for the simple FODO cell are given by

$$
\begin{aligned}
& \beta_{\max }=2 F\left(\frac{1+\sin (\mu / 2)}{1-\sin (\mu / 2)}\right)^{1 / 2}, \\
& \beta_{\min }=2 F\left(\frac{1-\sin (\mu / 2)}{1+\sin (\mu / 2)}\right)^{1 / 2} .
\end{aligned}
$$

Evaluate these for a quadrupole spacing of 100 m and phase advance per cell of 80°.
5. Given α, β at position s and the betatron tune v in a ring, calculate the tune shift and β change due to a thin quadrupole at that position.

