
Linear Normal Form and 
“Ascript” 

  
Yunhai Cai 

FEL and Beam Physics Department 

SLAC National Accelerator Laboratory 

 November 6-17, 2011 

6th International Accelerator School for 

Linear Collider,  

 Pacific Grove, California, USA 

                 



“Asrcipt”  

• Definition 
– “Ascript” is a symplectic transformation from 

the normal to physical coordinates 

• Why ascript? 
– Only have to deal with real matrix and TPSA 
– Relate to a rotation   
– Closer to conventional treatment such as 

Courant-Synder parameters 
– Natural extension from one-dimensional case 
– Include coupling and effects of errors  
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Courant-Snyder Parameters 
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One-turn matrix:                                               Rotation matrix: 

where A-1 is a transformations from physical to normalized coordinates: 

We have: 
1ARAM

A is an “ascript” and is not unique. Since two-dimensional rotational 
group is commutative AR(q) is also an ascript. Courant and Synder 
choose to have A12=0. 
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Symplectic Matrix 
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M is a symplectic matrix if it has the property that 
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where J is 
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How to Construct “Ascript”  
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We use eigen vectors to construct a complex symplectic matrix 

which is symplectic and has the property that 
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“Ascript” is defined as A=UK has the property that  

Further more A is symplectic and real. 
Clearly, it is an extension of one dimension case. 
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A Solution of Ascript 
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The eigen vectors are normalized as 

Explicitly, ascript can be written 

iJEE

iJEE

IIIIIIIIIIII
T

IIIIIIIIIIII
T

,,

*

,,

,,

*

,, ,

How to get ascript directly from the one-turn matrix? Given ascript, we 
have U=AK-1, which we should use in our map analysis. How about 
propagation of U? A2=T12*A1 leads to U2=T12*U1. But that implies we need 
to write force in complex, That is rather “dangerous”. Therefore, we should  
use the complex coordinates only in the analysis. 



As a result of this identity,                   is an “ascript” 
At position 2 if A1 is an “ascript” at position 1. We 
do not need to solve eigen vectors at every position in 
the ring. 

Propagation of “Ascript” 
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M1 and M2 are one-turn  
matrices at position 1 and  
respectively. M12 is the 
transport matrix from 1 to 2. 
It is easy to show 
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Propagation of “Lattice Functions”   

112122

~

2 AM)R(ψAA

2

22

~2

21

~

22

~

12

~

21

~

11

~2

12

~2

11

~

),(, AAAAAAAA

physical ring 

normalized ring 

M12 

1 

2 

R12 

A1
-1 

A2 

lattice functions at location 2: 

phase advance: 
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Both A1 and A2 are in  
Courant-Synder form, namely 
its 12 element is zero.  
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Edwards-Teng Coupling Parameters 
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Given an one-turn matrix M, we can decouple it with a symplectic  
transformation: 

where u1 and u2 can be parameterized as if no coupling case and w is a 
symplectic matrix: 
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There are ten independent parameters. Bar notes symplectic conjugate.  
g2=1-det(w). 

CET 
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        “Ascript” for Coupled Lattices 
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A is sympletic and its presentation is far from unique. In fact, there  
are two independent angles. There are eight independent parameters. 
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“ Symplectic Dispersion Matrix”  
by Ohmi, Hirata, and Oide 
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hx and hy are 2x2 matrices and parameter a is related to their  
determinates by  

H has 8 independent parameters. Four parameters describe dispersions  
and the other fours for “crab dispersions”  
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 A Symplectic Factorization of 
“Ascript” 

•  HOHO is a dispersion matrix by Ohmi, Hirata,  and Oide (8 
independent parameters) 

•  CET is coupling matrix by Edwards and Teng (4 independent 
parameters) 

• ACS is “three two-dimensional ascripts” in Courant-Synder 
form (6 independent parameters) 

• R( 1, 2, 3) are “three rotation matrix” for phase advances 
(3 independent parameters) 

• A has 21 independent parameters, which is the 
dimensionality of 6x6 symplectic matrix 
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