Linear Normal Form and "Ascript"

Yunhai Cai
FEL and Beam Physics Department
SLAC National Accelerator Laboratory
November 6-17, 2011
$6^{\text {th }}$ International Accelerator School for Linear Collider,
Pacific Grove, California, USA

"Asrcipt"

- Definition
- "Ascript" is a symplectic transformation from the normal to physical coordinates
-Why ascript?
- Only have to deal with real matrix and TPSA
- Relate to a rotation
- Closer to conventional treatment such as Courant-Synder parameters
- Natural extension from one-dimensional case
- Include coupling and effects of errors

Courant-Snyder Parameters

One-turn matrix:

$$
M=\left(\begin{array}{cc}
\cos \mu+\alpha \sin \mu & \beta \sin \mu \\
-\gamma \sin \mu & \cos \mu-\alpha \sin \mu
\end{array}\right) \quad R=\left(\begin{array}{cc}
\cos \mu & \sin \mu \\
-\sin \mu & \cos \mu
\end{array}\right)
$$

We have:

$$
M=A R A^{-1}
$$

where A^{-1} is a transformations from physical to normalized coordinates:

$$
A^{-1}=\left(\begin{array}{cc}
\frac{1}{\sqrt{\beta}} & 0 \\
\frac{\alpha}{\sqrt{\beta}} & \sqrt{\beta}
\end{array}\right), A=\left(\begin{array}{cc}
\sqrt{\beta} & 0 \\
\frac{-\alpha}{\sqrt{\beta}} & \frac{1}{\sqrt{\beta}}
\end{array}\right)
$$

A is an "ascript" and is not unique. Since two-dimensional rotational group is commutative $\operatorname{AR}(q)$ is also an ascript. Courant and Synder choose to have $\mathrm{A}_{12}=0$.

Symplectic Matrix

M is a symplectic matrix if it has the property that

$$
M J M^{T}=J
$$

where J is

$$
J=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & -1 & 0
\end{array}\right)
$$

How to Construct "Ascript"

We use eigen vectors to construct a complex symplectic matrix

$$
U=\left[E_{I}, i E_{-I}, E_{I I}, i E_{-I I}, E_{I I I}, i E_{-I I I}\right]
$$

which is symplectic and has the property that

$$
U^{-1} M U=\Lambda=\operatorname{diag}\left(e^{i 2 \pi \nu_{l}}, e^{-i 2 \pi \nu_{I}}, e^{i 2 \pi \nu_{\|}}, e^{-i 2 \pi \nu_{\|}}, e^{i 2 \pi \nu_{I I}}, e^{-i 2 \pi \nu_{I I}}\right)
$$

"Ascript" is defined as $A=U K$ has the property that

$$
A^{-1} M A=R=K^{-1} \Lambda K
$$

Further more A is symplectic and real.

$$
K=\frac{1}{\sqrt{2}}\left(\begin{array}{cccccc}
1 & -i & 0 & 0 & 0 & 0 \\
-i & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -i & 0 & 0 \\
0 & 0 & -i & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -i \\
0 & 0 & 0 & 0 & -i & 1
\end{array}\right)
$$

A Solution of Ascript

Explicitly, ascript can be written

$$
A=\sqrt{2}\left[\operatorname{Re} E_{I}, \operatorname{Im} E_{I}, \operatorname{Re} E_{I I}, \operatorname{Im} E_{I I}, \operatorname{Re} E_{I I I}, \operatorname{Im} E_{I I I}\right]
$$

The eigen vectors are normalized as

$$
\begin{aligned}
& E_{I, I I, I I J}^{T^{*}} J E_{I, I I, I I I}=i, \\
& E_{-I,-I I,-I I I}^{T^{*}} E_{-I,-I I,-I I I}=-i
\end{aligned}
$$

How to get ascript directly from the one-turn matrix? Given ascript, we have $U=A K^{-1}$, which we should use in our map analysis. How about propagation of U ? $A_{2}=T_{12}{ }^{\star} A_{1}$ leads to $U_{2}=T_{12}{ }^{\star} U_{1}$. But that implies we need to write force in complex, That is rather "dangerous". Therefore, we should use the complex coordinates only in the analysis.

Propagation of "Ascript"

M_{1} and M_{2} are one-turn matrices at position 1 and respectively. M_{12} is the transport matrix from 1 to 2.
It is easy to show

$$
M_{2}=M_{12} M_{1} M_{12}^{-1}
$$

As a result of this identity, $\tilde{A}_{2}=M_{12} A_{1}$ is an "ascript" At position 2 if A_{1} is an "ascript" at position 1. We do not need to solve eigen vectors at every position in the ring.

Propagation of "Lattice Functions"

lattice functions at location 2:

$$
\beta=\tilde{A}_{11}^{2}+\tilde{A}_{12}^{2}, \alpha=-\left(\tilde{A}_{11} \tilde{A}_{21}+\tilde{A}_{12} \tilde{A}_{22}\right), \gamma=\tilde{A}_{21}^{2}+\tilde{A}_{22}^{2}
$$

phase advance:

$$
\psi_{12}=\tan ^{-1} \tilde{A}_{12} / \tilde{A}_{11}
$$

Edwards-Teng Coupling Parameters

Given an one-turn matrix M we can decouple it with a symplectic transformation:

$$
\begin{gathered}
\mathrm{C}_{\mathrm{ET}} \\
M=\left(\begin{array}{cc}
g I & \bar{w} \\
-w & g I
\end{array}\right)\left(\begin{array}{cc}
u_{1} & 0 \\
0 & u_{2}
\end{array}\right)\left(\begin{array}{cc}
g I & -\bar{w} \\
w & g I
\end{array}\right),
\end{gathered}
$$

where u_{1} and u_{2} can be parameterized as if no coupling case and w is a symplectic matrix:

$$
\begin{aligned}
& u_{1}=\left(\begin{array}{cc}
\cos \mu_{1}+\alpha_{1} \sin \mu_{1} & \beta_{1} \sin \mu_{1} \\
-\gamma_{1} \sin \mu_{1} & \cos \mu_{1}-\alpha_{1} \sin \mu_{1}
\end{array}\right) \\
& u_{2}=\left(\begin{array}{cc}
\cos \mu_{2}+\alpha_{2} \sin \mu_{2} & \beta_{2} \sin \mu_{2} \\
-\gamma_{2} \sin \mu_{2} & \cos \mu_{2}-\alpha_{2} \sin \mu_{2}
\end{array}\right), \\
& w=\left(\begin{array}{ll}
w_{11} & w_{12} \\
w_{21} & w_{22}
\end{array}\right)
\end{aligned}
$$

There are ten independent parameters. Bar notes symplectic conjugate. $g^{2}=1-\operatorname{det}(w)$.

"Ascript" for Coupled Lattices

$$
\begin{aligned}
& A=C_{E T} A_{C S}=\left(\begin{array}{cccc}
g \sqrt{\beta_{1}} & 0 & \frac{w_{12} \alpha_{2}+w_{22} \beta_{2}}{\sqrt{\beta_{2}}} & -\frac{w_{12}}{\sqrt{\beta_{2}}} \\
-\frac{g \alpha_{1}}{\sqrt{\beta_{1}}} & \frac{g}{\sqrt{\beta_{1}}} & -\frac{w_{11} \alpha_{2}+w_{21} \beta_{2}}{\sqrt{\beta_{2}}} & \frac{w_{11}}{\sqrt{\beta_{2}}} \\
\frac{w_{12} \alpha_{1}-w_{11} \beta_{1}}{\sqrt{\beta_{1}}} & -\frac{w_{12}}{\sqrt{\beta_{1}}} & g \sqrt{\beta_{2}} & 0 \\
\frac{w_{22} \alpha_{1}-w_{21} \beta_{1}}{\sqrt{\beta_{1}}} & -\frac{w_{22}}{\sqrt{\beta_{1}}} & -\frac{g \alpha_{2}}{\sqrt{\beta_{2}}} & \frac{g}{\sqrt{\beta_{2}}}
\end{array}\right) \\
& g=\sqrt{1-\left(w_{11} w_{22}-w_{12} w_{21}\right), A^{-1}=-J A^{T} J}
\end{aligned}
$$

A is sympletic and its presentation is far from unique. In fact, there are two independent angles. There are eight independent parameters.

"Symplectic Dispersion Matrix" by Ohmi, Hirata, and Oide

$$
H=\left(\begin{array}{ccc}
\left(1-\frac{\left|h_{x}\right|}{1+a}\right) I & -\frac{h_{x} \bar{h}_{y}}{1+a} & h_{x} \\
-\frac{h_{y} \bar{h}_{x}}{1+a} & \left(1-\frac{\left|h_{y}\right|}{1+a}\right) I & h_{y} \\
-\bar{h}_{x} & -\bar{h}_{y} & a I
\end{array}\right)
$$

h_{x} and h_{y} are 2×2 matrices and parameter a is related to their determinates by

$$
a^{2}+\left|h_{x}\right|+\left|h_{y}\right|=1
$$

H has 8 independent parameters. Four parameters describe dispersions and the other fours for "crab dispersions"

A Symplectic Factorization of
 "Ascript"

$A=H_{\text {оно }} C_{E T} A_{C S} R\left(\psi_{1}, \psi_{2}, \psi_{3}\right)$

- $\mathrm{H}_{\mathrm{OHO}}$ is a dispersion matrix by Ohmi, Hirata, and Oide (8 independent parameters)
- $C_{E T}$ is coupling matrix by Edwards and Teng (4 independent parameters)
- $A_{C S}$ is "three two-dimensional ascripts" in Courant-Synder form (6 independent parameters)
- $R\left(\psi_{1}, \psi_{2}, \psi_{3}\right)$ are "three rotation matrix" for phase advances (3 independent parameters)
- A has 21 independent parameters, which is the dimensionality of 6×6 symplectic matrix

