Linear TPSA and Map

Yunhai Cai
FEL \& Beam Physics Department
SLAC National Accelerator Laboratory
November 6-17, 2011
$6^{\text {th }}$ International Accelerator School for
Linear Collider,
Pacific Grove, California, USA

Differential Algebra

$$
\begin{aligned}
& f(x)=\frac{1}{x+\frac{1}{x}}, f^{\prime}(x)=-\frac{1-\frac{1}{x^{2}}}{\left(x+\frac{1}{x}\right)^{2}}, \\
& x=2, \\
& f(2)=\frac{2}{5}, f^{\prime}(2)=-\frac{3}{25}, \\
& f^{\prime}(2) \approx \frac{f(2.1)-f(2)}{2.1-2}=\frac{0.38817-0.4}{0.1}=-0.1183 \\
& v=(2,1) \\
& \left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right)=\left(a_{1}+b_{1}, a_{2}+b_{2}\right), \\
& \frac{1}{\left(a_{1}, a_{2}\right)}=\left(\frac{1}{a_{1}},-\frac{a_{2}}{a_{1}{ }^{2}}\right), \\
& f(v)=\frac{1}{(2,1)+\frac{1}{(2,1)}}=\frac{1}{(2,1)+\left(\frac{1}{2},-\frac{1}{4}\right)}=\frac{1}{\left(\frac{5}{2}, \frac{3}{4}\right)}=\left(\frac{2}{5},-\frac{3}{25}\right)
\end{aligned}
$$

Definition of Linear TPSA

- Presentations:
$-X=a_{0}+a_{1} x+a_{2} p_{x}+a_{3} y+a_{4} p_{y}+a_{5} \delta+a_{6} I_{p}=a_{0}+X_{1}$;
$-y=b_{0}+b_{1} x+b_{2} p_{x}+b_{3} y+b_{4} p_{y}+b_{5} \delta+b_{6} I_{p}=b_{0}+y_{1}$;
$-Z=c_{0}+c_{1} x+c_{2} p_{x}+c_{3} y+c_{4} p_{y}+c_{5} \delta+c_{6} I_{p}=c_{0}+Z_{1}$;
- Rules
- $Z=X+Y ; Z=X-Y$; (plus, minus, like a linear polynomial)
- $Z=d X$; (d multiply all terms, d is a "number")
- $Z=X^{*} Y=a_{0} b_{0}+a_{0} Y_{1}+b_{0} X_{1}$; (almost like polynomial but drop second order terms, why call TPSA)
- $Z=f(X)=f\left(a_{0}\right)+f^{\prime}\left(a_{0}\right) X_{1}$; (Taylor expansion around $0^{\text {th }}$-order term)
- $Z=X^{-1}=1 / a_{0}-X_{1} / a_{0}{ }^{2}$; (Taylor expansion around $0^{\text {th }}$-order term)
- Oth-order term is treated as the same "number"

Definition of Linear Map

- Linear Map is defined by six linear TPSA
$-x=x_{0}+m_{11} x+m_{12} p_{x}+m_{13} y+m_{14} p_{y}+m_{15} \delta+m_{16} \frac{1_{p}}{p^{\prime}}$ column 3
$-P_{x}=p_{x 0}+m_{21} x+m_{22} p_{x}+m_{23} y+m_{24} p y+m_{25} \delta+m_{26} I_{p}$;
$-y=y_{0}+m_{31} x+m_{32} p_{x}+m_{33} y+m_{34} p y+m_{35} \delta+m_{36} l_{p}$;
$-P_{y}=y_{0}+m_{41} x+m_{42} p_{x}+m_{43} y+m_{44} p y+m_{45} \delta+m_{46} l_{p} ;$
$\square \Delta=\delta_{0}+m_{51} x+m_{52} p_{x}+m_{53} y+m_{54} p y+m_{55} \delta+m_{56} l_{p} ;$
$-L=l_{0}+m_{61} x+m_{62} p_{x}+m_{63} y+m_{64} p y+m_{65} \delta+m_{66} l_{p} ;$
where $x_{0}, p_{x 0}, y_{0}, p_{y 0}, d_{0}, l_{p 0}$, and $m_{i j}$ are coefficients of the linear polynomials. We note polynomials with capital letters. $\left(x_{0}, p_{x 0}, y_{0}, p_{y}, d_{0}, I_{p 0}\right)$ represents a reference orbit and matrix m for the linear perturbation relative to the reference orbit.

Track through a Matrix Element

$$
\left(\begin{array}{c}
X \\
P_{x} \\
Y \\
P_{y} \\
\Delta \\
L_{p}
\end{array}\right)_{f}=\left(\begin{array}{llllll}
t_{11} & t_{12} & t_{13} & t_{14} & t_{15} & t_{16} \\
t_{21} & t_{22} & t_{23} & t_{24} & t_{25} & t_{26} \\
t_{31} & t_{32} & t_{33} & t_{34} & t_{35} & t_{36} \\
t_{41} & t_{42} & t_{43} & t_{44} & t_{45} & t_{46} \\
t_{51} & t_{52} & t_{53} & t_{54} & t_{55} & t_{56} \\
t_{61} & t_{63} & t_{64} & t_{65} & t_{66}
\end{array}\right)\left(\begin{array}{c}
X \\
P_{x} \\
Y \\
P_{y} \\
\Delta \\
L_{p}
\end{array}\right)_{i}
$$

Results: orbit as a vector multiplication to matrix, $V_{f}=\dagger^{*} V_{i}$ and the 1 th-order as a matrix multiplication, namely $m_{f}=\dagger^{*} m_{i}$.

How to obtain the transfer matrix?

A Thin Quadrupole Magnet

Use s as "time" variable, Hamiltonian in paraxial approximation is given by

$$
H_{Q}=\frac{K_{1} L}{2}\left(x^{2}-y^{2}\right)
$$

Hamiltonian equation and its solution

$$
\begin{aligned}
& x_{f}=x_{i}, \\
& p_{x f}=p_{x i}-K_{1} L x_{i}, \\
& y_{f}=y_{i} \\
& p_{y f}=p_{y i}+K_{1} L y_{i} \\
& \delta_{f}=\delta_{i,} \\
& l_{p f}=l_{p i}
\end{aligned}
$$

Track a Linear Map through a Thin Quadrupole Magnet

$$
\begin{aligned}
& X_{f}=X_{i}=x_{i 0}+x_{i 1} \\
& P_{x f}=P_{x i}-K_{1} L X_{i}=p_{x i 0}+p_{x i 1}-K_{1} L\left(x_{i 0}+x_{i 1}\right), \\
& Y_{f}=Y_{i}=y_{i 0}+y_{i 1} \\
& P_{y f}=P_{y i}+K_{1} L Y_{i}=p_{y i 0}+p_{y i 1}+K_{1} L\left(y_{i 1}\right) \text { feed down dipole kicks } \\
& \Delta_{f}=\Delta_{i}=\delta_{i 0}+\delta_{i 1} \\
& L_{p f}=L_{p i}=l_{p i 0}+l_{p i 1}
\end{aligned}
$$

What happen to the $0^{\text {th }}$-order term?
How to get the transport matrix here?
How to the linear part of linear map transported? How this compares to a matrix code?

A Thin Sextupole Magnet

Use s as "time" variable, Hamiltonian in paraxial approximation is given by

$$
H_{S}=\frac{K_{2} L}{3}\left(x^{3}-3 x y^{2}\right)
$$

Hamiltonian equation and its solution

$$
\begin{aligned}
& x_{f}=x_{i}, \\
& p_{x f}=p_{x i}-K_{2} L\left(x_{i}^{2}-\right. \\
& y_{f}=y_{i}, \\
& p_{y f}=p_{y i}+2 K_{2} L x_{i} y_{i} \\
& \delta_{f}=\delta_{i,} \\
& l_{p f}=l_{p i}
\end{aligned}
$$

$$
p_{x f}=p_{x i}-K_{2} L\left(x_{i}^{2}-y_{i}^{2}\right) \text {, This map is nonlinear but symplectic. It } \dagger
$$ can be rewritten as Lie operator exp(-

Track a Linear Map through a Thin Sextupole Magnet

$$
\begin{aligned}
& X_{f}=X_{i}=x_{i 0}+x_{i 1}, \\
& P_{x f}=P_{x i}-K_{2} L\left(X_{i}^{2}-Y_{i}^{2}\right)=p_{x i 0}+p_{x i 1}-K_{2} L\left(x_{i 0}^{2}-y_{i 0}^{2}+2 x_{i 0} x_{i 1}-2 y_{i 0} y_{i 1}\right), \\
& Y_{f}=Y_{i}=y_{i 0}+y_{i 1}, \\
& P_{y f}=P_{y i}+2 K_{2} L X_{i} Y_{i}=p_{y i 0}+p_{y i 1}+2 K_{2} L\left(x_{i 0} y_{i 0}+x_{i 0} y_{i 1}+y_{i 0} x_{i 1}\right) \\
& \Delta_{f}=\Delta_{i}=\delta_{i 0}+\delta_{i 1} \\
& L_{p f}=L_{p i}=l_{p i 0}+l_{p i 1} \quad \text { quadrupole }
\end{aligned}
$$

What happen to the $0^{\text {th }}$-order term?
How to get the transport matrix here?
How to the linear part of linear map transported?

Linear TPSA Approach

- Substitute the "ray" of orbit with linear map, namely ($\left.x, p_{x}, y, P_{y}, \delta, l_{p}\right) \rightarrow\left(X, P_{x}, Y, P y, \Delta, L_{p}\right)$
- Use the rules of linear TPSA to make the "tracking"
- Result is
- Oth-order: same as the orbit vector
- 1st-order: matrix concatenation
- second-order and higher terms are dropped
- Advantage:
- Automatic and universal (works for "quadrupole, sbend")
- Allow to use so call "polymorphism" (operator overloading in C++ implementation)
- Disadvantage:
- You may loss the understanding of physics

How to Use it in a Ring?

- Track a linear map
- Search closed orbit
- Use the one-term matrix for its derivative
- Once closed orbit is found
- Perform eigen values and vector analysis to construct "Ascript" at a location of the ring as outlined in the first lecture
- Propagate the "Ascript" around the ring as a linear map
- $0^{\text {th }}$-order is the closed orbit
- $1^{\text {st }}$-order is the initial "Ascript"
- Calculate coupling, dispersions, C-S parameters using "Ascript" at every elements

