R&D Cavity Testing and ILC Cavity Fabrication at Jlab

Peter Kneisel and Gianluigi Ciovati Jlab

- Recent Single cell results with large grain niobium from CBMM, Heraeus, Ningxia
- Results from an investigation of influence of grain size on cavity performance
- Results from T-mapping tests with an anodized cavity to investigate "Q-drop"
- Status of 9-cell cavity fabrication

Evaluation of material from different vendors

Manufacturer	Ta Contents	RRR
CBMM	~800 ppm	~ 280
W.C.Heraeus	< 500 ppm	500
Ningxia	< 100 ppm	330

Fabrication and Treatment

Fabrication

- Standard deep drawing after cutting of sheets (wire EDM/CBMM, saw cut/Ningxia, diamond saw/Heraeus)
- Machining
- Welding of beam pipes to half cell
- Mechanical grinding
- Equator weld

Surface Treatment

- $\sim 50 \text{ micron bcp}$
- Hydrogen degassing at 600C for 10 hrs
- ~ 50 micron bcp, Test #1
- 12 hrs "in situ" baking at 120C for 12 hrs, Test #2
- 1200 C, 3 hrs post-purification with Ti
- ~ 50 micron bcp, Test #3
- 12 hrs "in situ" baking at 120C for 12 hrs,Test #4

Ningxia Large Grain Nb

Large Grain TESLA Cavity Shape SC, Chinese Nb

SMTF Video Conference

W.C.Heraeus Large Grain Nb

Large Grain TESLA Cavity Shape SC, WC_Heraeus Nb

SMTF Video Conference

CBMM Large Grain Ingot"D"

Large Grain TESLA Cavity Shape SC#2, Ingot"D"

Summary(1)

Large Grain TESLA Single Cell Results

Summary (2)

- Materials with different properties (RRR,Ta..) and prepared by different cutting methods behaved very similar after BCP only
- It is not clear yet, what the important features for best performance are
- There is a significant price difference in the different materials
- We are going to fabricate 5 single cell cavities each from Ningxia and W.C.Heraeus material to get some statistics
- These materials have been ordered
- The 9-cell cavities for FNAL are being fabricated from CBMM large grain niobium

Multi-Cells

- We have fabricated a 7-cell ILC_LL shape cavity without stiffening rings
- We encountered difficulties in room temperature tuning and could tune the cavity to only ~ 75% of field flatness

- Initial tests gave gradients of ~ 20 MV/m (flat profile assumed), limited by rf power
- Stiffening rings are added to the structure
- A 7-cell HG cavity was fabricated from CBMM ingot"B" and is being evaluated. In initial test insufficient material was removed after fabrication and performance was mediocre.

May 4, 2006

Grain Size Dependence

- There has been a suspicion for some time that grain boundaries can contribute to performance limitations in niobium cavities
- We fabricated 4 single cell cavities of the TESLA shape scaled to 2.2 GHz
 - Single crystal from CBMM material (Ta 800 ppm, RRR~280)
 - Poly-crystalline from standard Wah Chang niobium (Ta < 500 ppm,RRR>300)
 - Two large grain (grain size ~ cm²) cavities from Wah Chang ingottop and bottom (Ta < 500 ppm,RRR>300)
- All cavities were tested before and after post-purification and before and after "in-situ" baking. Only BCP was applied

Cavity shape: HG scaled to 2.26 GHz

 $E_{peak}/E_{acc} = 1.674$

 $B_{peak}/E_{acc} = 4.286 \text{ mT/(MV/m)}$

G = 270 Ω

SMTIE acce (MOX/m) ce

Conclusions

- No clear dependence of cavity performance to grain size was observed before post-purification
- After post-purification, the single crystal cavity clearly achieved the best performance
- The 2 large grain cavities behaved very consistently with each other but
 - R_{res} was higher than typically observed on other large grain cavities
 - they did not achieve higher fields than the fine grain one
- Baking works best in recovering from Q-drop in large grain/single crystal cavities treated by BCP than for fine grain ones
- It is not clear yet, which property of the material is important for best performance (grain size, impurity content, RRR...

Anodizing Tests: Understanding the "Q-drop"

- Initial report about such tests with a large grain cavity from Chinese niobium given at Frascati meeting:
 - "Q-drop" free Q vs E_{acc} performance (BCP only) turned into Q-drop after anodization of ~ 40 nm
 - Recovery from Q-drop after "in-situ" baking for 12 hrs at 120C
 - This behaviour was reproducible
 - Material parameters such as Δ/kT_{c} and mean free path as well as residual resistance were changing with treatment
- This test series was repeated with T-mapping on the same cavity

Experimental setup

16 x 36 Carbon-resistors Allen-Bradley, 100Ω -1/8W

- Cavity made from Ningxia (RRR~330, Ta content \leq 100 ppm), Nb sheets were saw-cut from the ingot
- Cavity shape: OC CEBAF, 1.476 GHz

Before Anodization

Conclusion

- Q-drop and "hot spots" can be generated and eliminated by anodization and "in situ" baking
- There is strong evidence that oxygen diffusion is involved in the Q-drop phenomenon
- The question then is:

Can one generate a single "hot spot" by generating an area on a cavity surface with increased oxygen concentration?

And if so, can this "hot spot" be eliminated/reduced by "in situ" baking?

"Hot Spot" ?

A concentrated water jet generates an oxidized area on niobium Large Grain TESLA Cavity Shape SC#2, Ingot"D"

ILC Cavity Fabrication (MOU with FNAL)

- Fabricate and test a prototype TESLA cavity from polycrystalline RRR niobium
- Fabricate 2 modified TESLA/ILC 9-cell cavities from large grain niobium with shorter beam pipe and possibly modified HOM couplers (tests on a single cell with a modified HOM coupler showed improved thermal stability)

<u>Status</u>

- Dumbbells for all 3 cavities have been welded
- "Grooving" for stiffening rings will start this week
- Flanges (beam line, HOM, FPC, field probe) are completed
- HOM coupling loops are completed
- Other parts (He vessel end dish and end disc flange) are in fabrication and aluminum models have been completed
- Beam pipes have been rolled, welded and nipples have been pulled
- A deep drawing die for back extrusion of HOM cans will be completed and tried out next week.

Fabrication Team

Bob Manus Larry Turlington Steve Manning Gary Slack Gigi Ciovati Peter Kneisel

Modified HOM Coupler Tests

Modified HOM Coupler Tests

CEBAF Single cell cavity with HOM couplers $Q_0 vs. E_{acc}$

26

ILC Cavity Fabrication:Large Grain Dumbbells

May 4, 2006

HOM Coupler Loops

May 4, 2006

He-vessel end dishes/End disc flange

May 4, 2006

Flanges

May 4, 2006

HOM Can Deep Drawing Die

May 4, 2006