Little Higgs with T-parity model at 1TeV using quick simulator

ILD workshop,LAL Tohoku Univ. Eriko Kato

M. Asano, K. Fujii, R. Sasaki, T. Kusano S. Matsumoto, Y. Takubo ,H. Yamamoto

Little Hierarchy problem

There are 2 predictions on where the energy scale of new physics should emerge.

2. Electroweak precision measurement

Λ>10TeV

- Conflict between the 2 energy scales.
- ➡ Little Higgs model was proposed!

Little Higgs model

<Little Higgs mechanism>

Global Symmetry : SU(5) $f \sim 1 \text{ TeV}$ SO(5) $v \sim <h>$ subgroup : $[SU(2)_{L} \times U(1)_{Y}]^{2} \rightarrow SU(2)_{L} \times U(1)_{Y} \rightarrow U(1)_{Y}$

<Higgs mass contribution>

Quadratic divergent terms cancel at 1-loop order Solves Little hierarchy problem

Littlest Higgs with T-Parity model

LHT masses in gauge & lepton sector can be described with 2 parameters f(VEV): energy scale of global symmetry breaking K : lepton Yukawa coupling

Important parameters which describe how LHT particles obtain masses & solve little hierarchy problem.

Aim of study

Evaluate ILC's sensitivity on ...

- 1st aim : extracting model parameters(f&kappa)
 - 2nd aim: completing the mass spectrum and checking consistency with parameters

Strong proof that discovered particles are indeed LHT.

Simulation environment

Software for fast simulation

- Physsim(generate basic particles)
 - Helicity amplitude: HELAS
 - Numerical integration: BASES
 - Event generation: SPRING
- JSF hadronizer (time evolution)
 - Hadronization: Pythia
 - Tau decay : TAUOLA
- JSF Quick simulator(simulation)
- Experiment environment
- CM energy: 1TeV
- luminosity : 500fb⁻¹ (4 years)
- beam/bremstrahlung, beam energy spread are included.

Analysis strategy

Analysis procedure

- 1. T-Parity new particles are produced in pairs
- 2. produced new particles decay into SM and LHT particles.
- 3. Extract LHT mass information by recognizing end point of SM energy.
- 4. LHT masses are expressed with model parameters.
- 5. Extract model parameters.

Heavy gauge boson sector ~mass & parameter f extraction ~

W_HW_H @1TeV (phys. Rev D79.075013)

Z_HZ_H @1TeV

Mass determination in gauge sector

Through simultaneous fitting W_HW_H&Z_HZ_H (both derive A_Hmass), we were able to derive a single mass solution.
Mass measurement accuracy: A_H 1.3%, Z_H1.1% W_H0.20%
parameter measurement accuracy: f 0.16%
ILC is highly sensitive to f !

Heavy lepton sector ~mass¶meter κ extraction~

e_He_H @1TeV

Aim: extract lepton Yukawa coupling κ by measuring e_H mass.

Extremely important in knowing lepton sector mass generation mechanism.

e_H mass/parameter extraction

v_Hv_H@1TeV

AIM: extract v_H mass and complete LHT mass spectrum

- \lor v_Hv_H(eW_HeW_H) (tot xsec :1036fb)
 - Signal: eeqqqq(2W) A_HA_H (25.96fb)
 - M_{νH}≒√2κf=400GeV

v_H mass/parameter extraction

Summary

- Results show that ILC is capable of doing highly accurate precision measurements on LHT masses and parameters.
- Parameter extraction is extremely important in studying LHT's mass generation mechanism.
- Little Higgs model's characteristic mass spectrum (expressed with 2 parameters) can be confirmed by high precision mass measurement.

particle	mass	sensitivity			
A _H	81.9(GeV)	1.3%			
W _H	369(GeV)	0.20%			
Z _H	368(GeV)	0.56%	parameter	True value	Measurement accuracy
e _H	410(GeV)	0.46%	f	580(GeV)	0.16%
V _H	400(GeV)	0.001%	К	0.5	0.0001%

plan

Cross section can be measured when changing polarization.

➢ Coupling will be derived.

	Cross section n	neasurement
Mode	σ@0%pol	σ meas. accuracy
Z _H Z _H	99fb	0.89%
e _H e _H	3.6fb	2.7%
N _H N _H	25fb	0.77%
W _H W _H	1 06fb	0.41%

backup

Selection of model parameters

lepton and gauge sector are described with 2 model parameters

Event reconstruction

Select 2 Isolated lepton with maximum energy
 Reconstruct and force the rest of the tracks as 4 jets.
 Select reconstructed jet pair that minimizes χ².

$$\chi_{H}^{2} = \left(\frac{M_{H1} - M_{H}}{\sigma_{M_{H}}}\right)^{2} + \left(\frac{M_{H2} - M_{H}}{\sigma_{M_{H}}}\right)^{2} \quad M_{H} = 134.0(GeV)$$

Signal Electron selection

Br(h→bb) =42.35% O Br(h→WW)=39.57% × Isolated electron emitting decay Br(h→tt)= 5.21% Onon electron emitting Br(h→gg) =4.49% O Br(h→cc)= 2.31% O

e_H Branching ratio study

$$\mathcal{L}_{L}^{(Gauge)} = \dots + \frac{g}{\sqrt{2}} \left[\bar{e}_{H} W_{H} P_{L} \nu - \frac{g}{2} \left[\bar{e}_{H} Z_{H} \left(c_{H} - \frac{s_{W}}{5c_{W}} s_{H} \right) P_{L} e - \frac{g}{2} \left[\bar{e}_{H} A_{H} \left(s_{H} + \frac{s_{W}}{5c_{W}} c_{H} \right) P_{L} e \right] \right]$$
Charge suppress Mixing angle非常に小さい s_H~0.1

Reference :arXiv: 4632v2 "T-Parity odd heavy lepton at LHC"

e_H Branching ratio study

Signal Electron selection

- Probability of missIDing e from b jet is small.(signal:H→bb)⇒Optimize with selection efficiency of e from e_H.
 - Select point right before slope becomes shallow.
- Cone Energy <15GeV :P(missID)=1.2%,signal efficiency=84%</p>

Reconstructed Higgs mass

Decay mode	Reconstructed particle
e _H e _H	Higgs
eeWW	W boson
tt	B meson
τ _н τ _н	Higgs

Missing transverse momentum

Signal has large missing transverse momentum

Parameter extraction

Through Toy MC, Confirmed that fitting is valid.

- extracted value: f=579.6±3.0(GeV), κ =0.5±4e-4
- True value: f=580(GeV) , κ=0.5
- Extracted parameters include true value

