Status of LCFIVertex

Tomohiko Tanabe, Taikan Suehara The Univ. of Tokyo

ideal flavor tagging

reconstruct the entire decay chain (b -> c -> s) in a jet

- vertex reconstruction is important
 - but vertices cannot be made from a single track
 - use track measurements (impact parameter)
- presence of neutral particles

IP

- missing correction by using \boldsymbol{p}_{T}
- lepton ID: energetic/isolated leptons is a sign of heavy quark decays

S

- key is variable combination
 - likelihood, multivariate analysis (e.g. ANN)
 - event categorization (discrete variables)

LCFIVertex

LCFIVertex framework

- improvements in vertex finding, jet clustering, flavor tagging in a unified way
 - creation of a new framework suited to this task
 - data types: event, track, neutral, mcparticle, jet, vertex
 - algorithm collections: old LCFIVertex kernels, new algorithms in vertex finding, jet clustering
 - LCFI's original neural net implementation is difficult to maintain/extend
 - replaced by TMVA (ANN and BDT)
 - » use of other frameworks possible with a bit of work
 - i/o integration as a marlin processor (through adapter objects)
 - i/o with other framework also possible
 - » standalone executable mode
 - » root macro invocation mode
 - modular design: algorithms can be turned on/off through XML files

ROOT dependency: use of TMVA requires the latest ROOT version

from the user's perspective

- prepare training and testing samples
- define categories (one classifier response for each category)
- define the input variables for each category
- write code implementing the input variables
 - the "default" variables are already implemented
 - a user can add any arbitrary variables with a bit of coding work
 - if proven to be effective in the general context, will be added to the official repository
- specify jet clustering and vertex finding algorithms to use
- invoke automated training process
 - normalization of input variables
 - creation of ntuples containing the variables
 - training of each sample (takes time)
 - produce intermediate plots, to be checked by the user
 - creation of weight files, to be used by the classifier in the next phase
- get final output, specifying the expected background rates

status of LCFI code

- implementation of new framework nearing completion; release expected soon
- for comparison purposes the original LCFIVertex implementation is left untouched
 - our new framework could be installed as a separate package, or inside a new directory within the old package (any preferences?)
- management of LCFI code is done through the GIT software
 - originally written for use with the Linux kernel source development, superior to cvs/svn in many ways
 - fast, distributed (central repository NOT needed)
 - we would like to propose this system for those interested in contributing to the project with code

summary and future work

- release of LCFI new framework soon (1~2 weeks)
- establish common development model, expanding the developer base
 - with close connection with CLIC (Jan, Lucie)
- lepton ID inside jets is highly desired
 need help from PFA expert (Mark?)
- application of new framework in the ZHH analysis
 - talk by Taikan in the main meeting

motivation

- Many important physics process have multiple heavy flavor jets
 - Higgs BF:H -> bb, H -> cc
 - Higgs self-coupling: ZHH -> qqbbb
 - top-Yukawa:ttH -> bWbWbb
 - top physics:tt -> bWbW

ILD Detector

vertex finding algorithms

• topological vertex finder (ZVTOP)

- can find vertices for arbitrary topology with any number of tracks (must be separated from the primary vertex)
- it takes lots of CPU time due to having to evaluate the vertex function at many points in space
- tear-down
 - start from a set of tracks, remove tracks which are inconsistent (large chi-squared contribution)
 - if the primary tracks are properly removed, vertices can be found with high efficiency
- build-up
 - using track pairs as seed, attach other tracks
 - good seeds lead to good vertices

LCFI input variables

- previously in LCFI:
 - three categories, trained independently:
 - # vertex = o
 - # vertex = 1
 - # vertex >= 2
 - for # vertex = o (8 variables):
 - d_o impact parameter (1)
 - d_o impact parameter (2)
 - z_o impact parameter (1)
 - z_o impact parameter (2)
 - track momentum (1)
 - track momentum (2)
 - d_o joint probability
 - z_o joint probability
 - for # vertex = 1, >=2 (8 variables):
 - d_o joint probability
 - z_o joint probability
 - vertex decay length
 - vertex decay length significance
 - vertex momentum
 - pt-corrected vertex mass
 - vertex multiplicity
 - vertex probability from the fitter

input variables

- additional variables
 - boosted sphericity
 - vertex displacement/momentum angle
 - vertex mass (not pt corrected)
 - mass, momentum, decay distance, decay significance for the first and second (if found) vertices
 - distance, significance, and displacement/momentum angle between the first and second vertices

new input variables

- the new variables are trained by BDT
 - for # vertex = 0 (9 variables):
 - d_o impact parameter (1)
 - d_o impact parameter (2)
 - z_o impact parameter (1)
 - z_o impact parameter (2)
 - track momentum (1)
 - track momentum (2)
 - d_o joint probability
 - z_o joint probability
 - boosted sphericity
 - for # vertex = 1 (17 variables):
 - d_o impact parameter (1)
 - d_o impact parameter (2)
 - z_o impact parameter (1)
 - z_o impact parameter (2)
 - track momentum (1)
 - track momentum (2)
 - d_o joint probability
 - z_o joint probability
 - boosted sphericity
 - vertex decay length
 - vertex decay length significance
 - vertex momentum
 - vertex mass (pt-corrected)
 - vertex mass (not pt-corrected)
 - vertex multiplicity
 - vertex probability from the fitter
 - vertex disp/momentum angle

- for # vertex >= 2 (29 variables):
 - d₀ impact parameter (1)
 - d₀ impact parameter (2)
 - z₀ impact parameter (1)
 - z_0 impact parameter (2)
 - track momentum (1)
 - track momentum (2)
 - d₀ joint probability
 - z₀ joint probability
 - boosted sphericity
 - vertex #1 decay length
 - vertex #2 decay length
 - distance between vertex #1 & #2
 - vertex #1 decay length significance
 - vertex #2 decay length significance
 - separation significance between vertex #1 & #2
 - vertex #1 momentum
 - vertex #2 momentum
 - vertex momentum (combined)
 - vertex #1 mass (not pt-corrected)
 - vertex #2 mass (not pt-corrected)
 - vertex mass (combined, pt-corrected)
 - vertex #1 multiplicity
 - vertex #2 multiplicity
 - vertex multiplicity (combined)
 - vertex probability from the fitter
 - vertex #1 disp/momentum angle
 - vertex #2 disp/momentum angle
 - vertex #1/#2 disp/momentum angle
 - vertex #1/#2 angle

evaluating classifier response

- Lol flavor-tagging evaluation produced purity-efficiency plots
 - but this depends on the fraction of heavy jets, which changes from sample to sample
 - BF(Z->bb)=15%, BF(H_{120 GeV}->bb)=68%
- better to use a fraction-independent measure: evaluate using background efficiency versus signal efficiency instead

variable ranking

- single variable ranking shows the most useful variables (on their own)
 - joint probabilities, vertex mass
- however, any other uncorrelated variable can help; these plots do not show this effect

variable ranking (correlation)

nvtx==0

- result of training after removing a variable
- this shows how "unique" this variable is in terms of uncorrelated classifying power
- significantly worse performance after removing the variable shows that it's effective
- for nvtx=0, joint probabilities (both d₀ & z₀) are the most powerful as expected

variable ranking (correlation)

nvtx==1

- for nvtx=1, the most effective variables are:
 - displacement/ momentum angle of the vertex
 - uncorrected mass of the vertex
- <u>newly added variables are</u> <u>shown to be effective!!!</u>

variable ranking (correlation)

nvtx>=2

- for nvtx>=2, the most effective variables are:
 - separation significance between the 1st and 2nd vertices
- <u>AGAIN: newly added</u> <u>variables are shown to be</u> <u>effective!!!</u>

results

background = cc & uds mixed equally

there is already improvement merely by switching to TMVA (signal eff > 0.8)

more improvement by adding new variables (signal eff > 0.75)

results

uds rejection is pretty good

need more work on charm

summary (part I)

- we have a mature analysis framework to optimize flavor tagging
 - improvements over LCFI: ability to add arbitrary number of categories and input variables, choice of training method (via TMVA)
- performance for qq @ 91.2 GeV has been improved
- next:
 - leptons!
 - dedicated charm tagging
 - optimization at higher jet energies
 - ZHH jets, qq @ 500 GeV
 - qq @ CLIC energies
 - samples have been provided by A. Timoce and S. Posse (thanks, will look at them asap)

rejection of V° particles

- despite having V° taggers in the Marlin reconstruction chain, our vertex finders still find V°'s (K_s, Lambda, conversions) for two-track vertices
- we apply the following cuts to reject V°'s (reduce uds contamination):
 - cut on the angle θ between the vertex displacement from IP and the V° direction
 - mass requirements
 - K_s: cos θ >0.999 & mass 15 MeV within PDG value
 - Lambda: $cos\theta > 0.99995$ & mass 20 MeV within PDG value
 - conversions: $\cos\theta > 0.99995$ & less than 10 MeV for conversion mass, where the mass is geometrically corrected so that it is calculated using the track dip angles

$$m_{\rm conv}^2 = 2|\vec{p_1}||\vec{p_2}|(1 - \cos \Delta \lambda_{12})$$

	before cut	after cut
K _s	3205	623
Lambda	1482	371
conversions	2544	278
other two-track reco vertices	30747	30333

ZVTOP + teardown

ZVTOP is not good at vertices near the IP. Teardown is performed using tracks not used by ZVTOP. After quality cuts (dist, chi2, ntrks), we find +3% efficiency increase for the same purity.

