FPCCD software For ILD_WS pre

Physics and Software meeting

2010/11/19 D.Kamai (Tohoku University)

Outline

■ FPCCD software were uploaded.

- FPCCD Digitizer
 - (in FPCCDDigi of MarlinReco package)
- FPCCD Clustering
- FPCCD OverlayBX (in Overlay package)
- How to use FPCCD software
- Some results of simulation
 - Resolution
 - Background occupancy
- Requirements for FPCCD simulation

Summary

How to use FPCCD software

Full simulation with FPCCD

- FPCCD software perform as processor of Marlin.
- In steering file of Marlin, replace VTXDigiProcessor with FPCCDDigitizer & FPCCDClustering.

Name	Туре
IyAIDAProcessor	AIDAProcessor
/yMaterialDB	MaterialDB
MyTPCDigiProcessor	TPCDigiProcessor
MyVTXDigiProcessor	VTXDigiProcessor
1yFTDDigiProcessor	FTDDigiProcessor
lyETDDigiProcessor	ETDDigiProcessor
MyLEPTrackingProcessor	LEPTrackingProcessor
MuSiliconTracking	SiliconTracking

Name	Туре		
MyAIDAProcessor	AIDAProcessor		
MyMaterialDB	MaterialDB		
MyTPCDigiProcessor	TPCDigiProcessor		
MyFPCCDDigitizer	FPCCDDigitizer		
MyFPCCDClustering	FPCCDClustering		
MyFTDDigiProcessor	FTDDigiProcessor		
MyETDDigiProcessor	ETDDigiProcessor		
MyLEPTrackingProcessor	LEPTrackingProcessor		
MuSiliconTracking	SiliconTracking		

Background simulation of FPCCD

 merge pixel hits of background before clustering using by FPCCDOverlayBX.

Variable parameters

FPCCD Digitizer

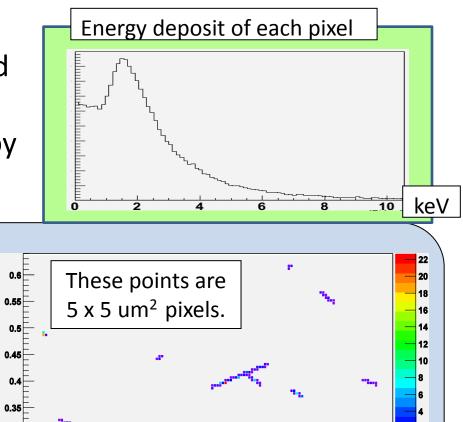
- variables : pixel size, pixel height
- FPCCD Clustering
 - variables : # bit for read out, dynamic range, noise rate, threshold
- FPCCD OverlayBX
 - variables : read out time (# BX), Background file names

FPCCD digitizer

- The hit points and track momenta are obtained from Mokka.
- The track is calculated by the hit point and momentum.
- The pixel hit is identified by the intersections of track and boundaries of pixels.
 Energy deposit of each

5µm

} 5μη


7.4

The energy deposit of hit is divided into pixels as proportional to path length and these are approximated by Landau distribution.

True hits

Track

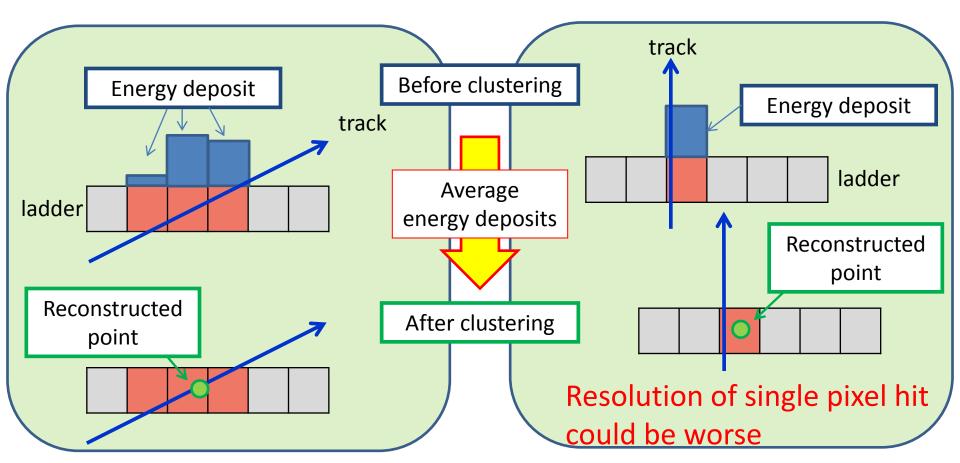
Pixel hits

7.8

7.9

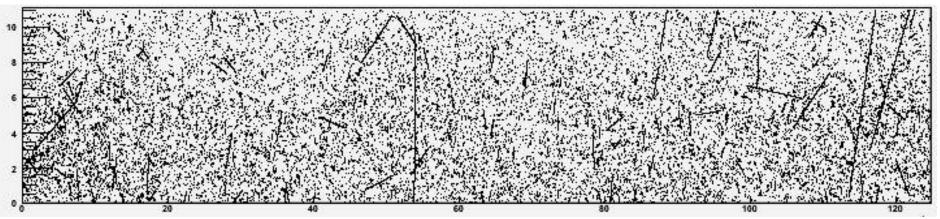
keV

zeta


7.6

7.7

7.5


FPCCD clustering

- The position of pixel hit and its energy deposit is obtained from FPCCD digitizer.
- The neighboring pixels are recognized as a cluster.
- The hit point is reconstructed as <u>an energy weighted position</u>.

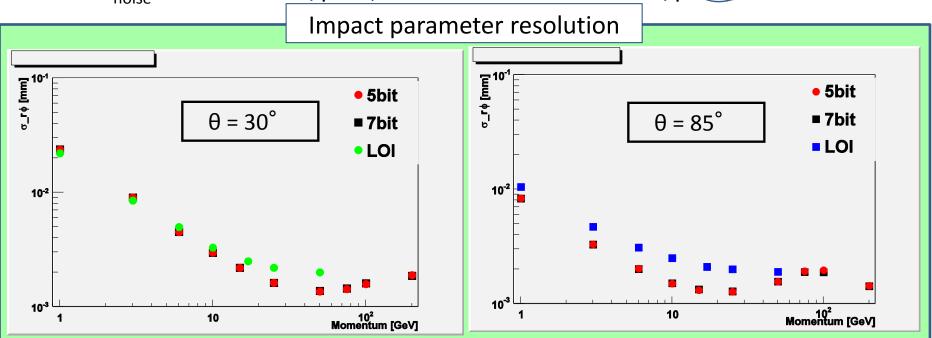
FPCCD OverlayBX

- If there are more than 2 hits in the same pixel, the processor adds the energy deposit and rewrites Hit quality.
 Data pool made by FPCCD digitizer is needed. (1500BX is prepared.)
- Pixel hits of 100BX pair background at a ladder of innermost layer

Spatial resolution

The θ dependency of the position resolution was checked.

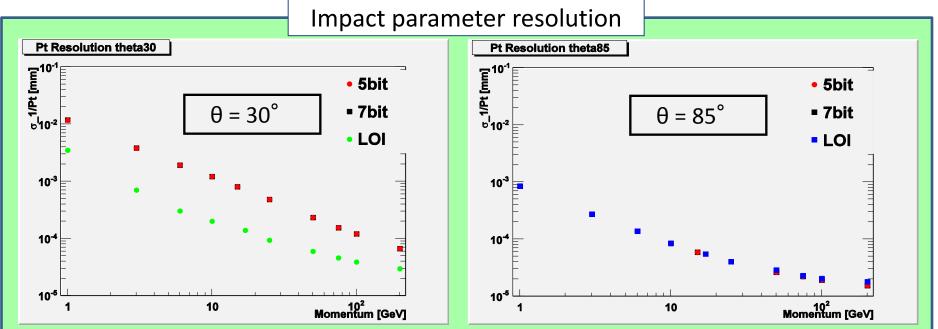
- $-\mu$ (Momentum 100GeV)
- 7 bits read out
- $-\sigma_{noise}$: 50 electrons /pixel, Threshold : 200 electrons /pixel.


θ	σ _z	σ _{R-φ}	Position resolution
90°	1.5 um	0.94 um	$\begin{bmatrix} \mathbf{L} \\ \mathbf{L} $
75 °	0.64 um	0.96 um	
60°	0.83 um	0.96 um	
45°	1.2 um	0.96 um	0.8⊢ 0.6⊢
30°	1.6 um	0.98 um	0.4 ^E
LOI value	2.8 um	2.8 um	0.2 0 30 40 50 60 70 80 90

- The Z resolution is worse at forward.
- The R- ϕ resolution is not depends on θ .
- The Z resolution of the vertical track is bad because of single pixel hit.

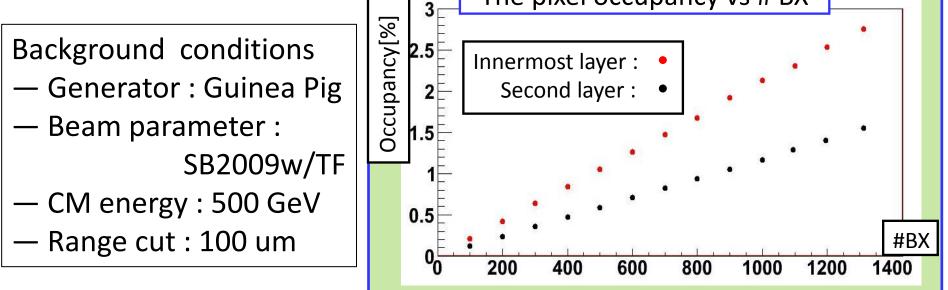
θ

Impact parameter resolution


- The momentum dependency of the impact parameter resolution was checked.
 - μ- (Momentum 100GeV)
 - 7 bits & 5bits read out
 - σ_{noise}: 50 electrons /pixel, Threshold : 200 electrons /pixel.

• There are no significant difference between 7bits & 5 bits read out. • $\sigma_{r\phi}$ is better at $P_T = 25$ GeV.

Momentum resolution


- The momentum dependency of the momentum resolution was checked.
 - μ (Momentum 100GeV)
 - 7 bits & 5bits read out
 - σ_{noise} : 50 electrons /pixel, Threshold : 200 electrons /pixel.

- There are no difference between 7 bits & 5 bits read out.
- $\theta = 85^{\circ}$ is same as LOI, $\theta = 30^{\circ}$ is worse than LOI.

Pair background occupancy

The pixel occupancy of the FPCCD VTX innermost, second layer was checked.

- Pixel occupancy for 1train(1312 BX)
- Innermost layer : 2.76%
- Second layer : 1.55%

Very low occupancy, compared with conventional CCD. (25um pixel >> 10%)

The $\gamma\gamma \rightarrow$ hadron background

- The number of clusters from $\gamma\gamma \rightarrow$ hadron background was checked.
 - data statistics : 2000 $\gamma\gamma \rightarrow$ hadron events (corresponds to ~2860 BX)

# Clusters from $\gamma\gamma \rightarrow$ hadron for 1 train									
Layer	1a	1b	2a	2b	3a	3b			
# Clusters	2090	1700	1830	1700	1500	1430			

- Rate : ~ 1.5 clusters/BX. (~ 1 / 2000 of pair background)
 - These are real tracks.
 - Almost clusters have only 1 pixel.
 - It will difficult to reject these background using cluster shapes.

Requirement for FPCCD simulation

- Mokka production
 - Geometry
 - Cable and services are not implemented.
 - Support structure is not implemented.

- Data format
 - Information of momentum of particle must remain for FPCCD digitizer.

Summary

FPCCD software were uploaded.

- svn co <u>https://svnsrv.desy.de/public/marlinreco/MarlinReco/trunk</u> MarlinReco
- svn co <u>https://svnsrv.desy.de/public/marlin/Overlay/trunk</u> Marlin
- IP resolution & momentum resolution were checked.
 - Momentum resolution
 - $\theta = 85^{\circ}$ is same as LOI, $\theta = 30^{\circ}$ is worse than LOI.
 - IP resolution
 - Better than LOI, at $P_T = 25$ GeV.
 - There are no difference between 7 bits & 5 bits read out.
 - Occupancy
 - Pair background : Innermost layer 2.76 %, second layer 1.55%
 - $\gamma\gamma \rightarrow$ hadron : ~ 1.5 cluster /BX
- There are some requirements to Mokka production.
 - Geometry, Data format

Plan

- Determination of short enough Range cut.
- Estimation of background effect on tracking.

Development of Silicon track finder using Kalman filter.