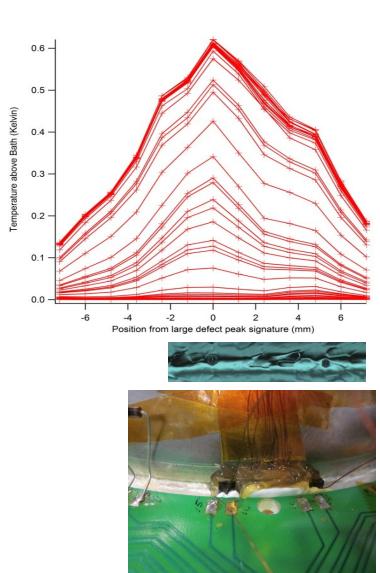
Americas Report

C.M. Ginsburg (FNAL)

for the FNAL/ANL, JLab, and Cornell (no report this time) cavity teams

S0 Meeting 7.June 2011

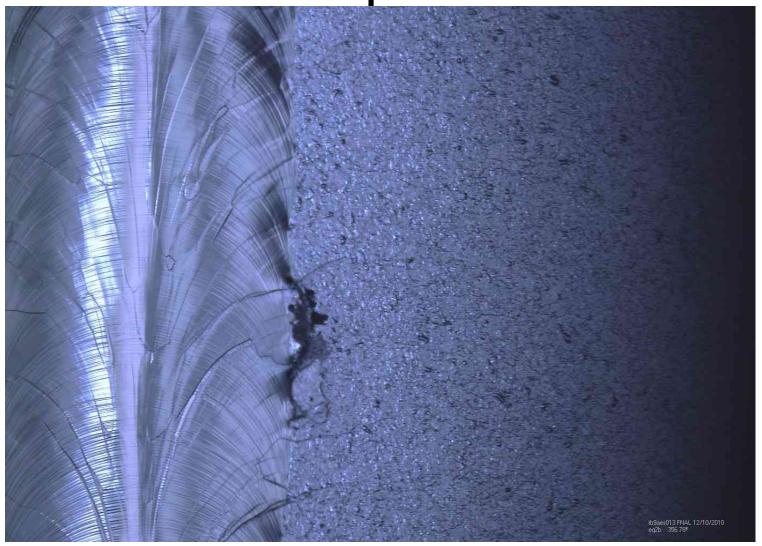
JLab Status


RG May 31, 2010

9-cell Cavities

- TB9AES011 in process of treatment and testing
- JLAB LG#1 RF test following re-HPR completed with reduced field emission
 - Cavity quench limited at 24 MV/m
 - OST data analysis and dual-mode excitation measurements to be completed
- DESY seamless 9-cell cavity RF test following light EP completed
 - Highest gradient reached 18 MV/m. OST predicted a quench location in cell#4
 - Optical inspection of quench location under way
- TB9NR001 light EP on hold due to shortage of replica material
- TB9AES006 at FNAL for mechanical polishing
- Expecting a 9-cell cavity from IHEP for vertical test

Instrumentations for Quench and Field Emission Studies


- Experiments with
 Hamamatsu diodes
 (received from KEK) placed at locations near cavity started for "at-cavity" X-ray monitoring
- High-resolution local thermometry apparatus tested with natural defects in cell #5 of TB9NR001
 - Twin defects (4mm apart) were resolved (graph and images shown)
 - Next step is to measure a controlled defect in a 1-cell cavity

FNAL/ANL Update

- CM1 tests ongoing
- Plans underway for CM2 assembly will affect other work
- Horizontal test stand
 - Vacuum studies and remediation successful, as shown on TB9RI018
 - TB9RI019 was successfully tested, and TB9RI018 with two cooldowns is completing the test this week
- Vertical qualification
 - Several 1-cell tests in pursuit of general R&D and vendor qualification
 - First test of the new batch of AES 9-cell cavities occurred
 - TB9AES013 reached 17 MV/m after standard EP processing with localized quench and potential feature seen in optical inspection before final EP
 - These cavities had light BCP at AES and most show pitting
 - Two more are in process: one at JLab for standard EP/test, the other tumbled
 - TB9RI026 (localized grinding at KEK) good performance
 - Standard EP at FNAL/ANL: initially 29 MV/m then 20 MV/m after FE event
 - @KEK: local grinding, tuning >98% flatness, 20-30um EP, HPR, drying, and flanged in the clean room air.
 - HPR, vertical test prep done at FNAL/ANL
 - VT 13.May: 36.6 MV/m Q0=7E9; low-field Q0~1.35E10; FE-free; quench limitation (2nd sound implicates cell 5)
 - AES002 (dressed) being 120C baked at JLab after dressed-EP
 - TB9RI022 (6th pass, 5th light EP) was qualified
 - VT 24.May 2011: 37.9 MV/m with low FE Q0= 8.8E9
 - Next plans: TB9AES012 and TB9ACC012 (tumbled)

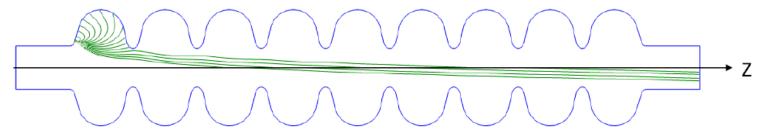
TB9AES013 quench location

Shown as-received (before EP)

Scenario 1: "best performance" CM2

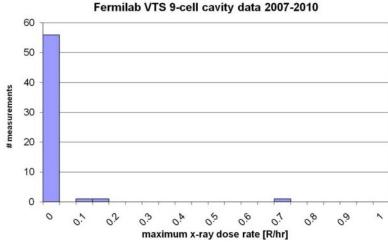
<u>cavity</u>	<u>status</u>	<u>needs</u>	Eacc [MV/m]	<u>main risk</u>	
TB9RI018	FE in HT after pump/purge (admin limit)	HPR, good HT	35	FE	Now
TB9AES009	HTS Good	HPR	35	FE	
TB9AES010	HTS Good (admin limit)	HPR	35	FE	
TB9AES008	HTS Good (admin limit)	HPR	35	FE	
		re-weld;		weld	
		different		problems,	
TB9ACC016	VTS (dressed) good (VT gradient)	coupler	36.5	coupler fails	
TB9RI019	in HTS (VT gradient)	good HT	38	coupler	
TB9RI024	prepped for HTS (VT gradient)	good HT	40	coupler	
TB9RI027	prepped for HTS (VT gradient)	good HT	40	coupler	
		average*:	36.8		

Five HPR and HT preps


- ✓ TB9RI018
- ✓ TB9AES009
- ▼ TB9AES010
- ✓ TB9AES008
- ✓ TB9ACC016

Four more good horizontal tests

- ✓ TB9RI019
- TB9RI018
- TB9RI024
- o TB9RI027


ACCEL8(31 MV/m) and TB9AES007(33 MV/m) will also be HPR'd as backup

FNAL field emission studies

Simulations made for radiation safety of vertical test stand (VTS1)

- Fishpact for field emission model
- MARS (GEANT) for particle transport through material
- According to the described model, the predicted dose rate under the external shielding is < 0.250 R/hr 90% of the time.
- The measurements are well within this value, to within the limited statistics.

Rakhno et al.

SATIF-10 (June 2010) http://lss.fnal.gov/archive/2010/conf/fermilab-conf-10-246-apc-td.pdf IPAC10 (May 2010) http://www-spires.fnal.gov/spires/find/hep/www?j=CONFP,C100523,WEPEC056

FNAL field emission studies

Requirements to X-ray instrumentation

- What to measure
 - X-ray map location of "hot" X-ray radiation spots on the outer surface of a cavity or cryostat
 - Intensity of radiation
 - Energy spectrum of X-ray photons
 - Angular distribution
 - Timing (ex: intensity, energy vs RF pulse timing)
 - ▶ Use all this information to figure out what is going on inside the cavity
- Mobile and flexible system which can be moved to different test areas

(VTS, HTS or even CM tests)

Several detectors under study:

- •"Slow"
 - High rate flux measurement
 - Sensor can be in LHe
 - •Readout electronics ~30ft away, "warm"
- "Fast"
 - Single photon detection
 - Potentially measure photon energy
 - Preamp near sensor ... "cold"

Primary issue: reliability and reproducibility