

Report from SNS on HOM Coupler

May 18, 2006 ILC technical status meeting

SANG-HO KIM ASD/SNS

Cavity Performances

Maximum fields achieved in the installed cavities.

Operational fields are kept in general at the 75-80% of the maximum fields

High beta cavities are limited at lower Bmax and show lower FE threshold.
→implies cavities are mainly limited by other factors rather than quenching

HOM coupler

Baseline cavities have coaxial HOM coupler at each side
Two cavities are not operational due to the HOM coupler
Many installed cavities (~10) are showing abnormal signals zero coupling and rep. rate dependent abnormal signal electron loading power level changes

•HOM coupler should not have problems with the fundamental mode

HOM Qex'S (low power measurement)

6

Case (I)

Same cavity at the same gradient

1 Hz

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

10 Hz

Case (II)

Electron Loading

It is not clearly seen here, but observed big spikes only from HOM signals (blue circled) \rightarrow vacuum excursion (trip)

Case (III)

Coupling changes

Possible Causes

H field On feedthru tip (Cu) ; ~5 mT at nominal flat field

Field enhancements Field tilt gap distance uncertainty

E field

~10 MV/m

Field emission

At both ends of antenna

at nominal flat field

Local Vacuum Warm (hot) feedthrough Leak

Surface Cleanness Electron loading

Options for HOM coupler

Option1

More robust HOM couplers are being developed. Jlab; SC feedthru Feedthru w/ Sapphire insulator Feedthru tip geometry Additional cooling

DESY; SC feedthru Nb tip attached to HOM antenna

Major Concerns (other than HOM damping) Evaporation of Cu Damaging ceramic Degradation of cavity performance

Option2

If HOM coupler is not an essential device, we can think of removing it.

Physics concerns are still same No beam dynamic issue (D. Jeon) HOM power issue; higher beam current but statistically about same

Benefit

vs. Risk, Statistical reliability & impact on operational availability

Studies are under progress including prototype test

