

Status of the SiD-Iowa PFA: New developments and plans

Garabed Halladjian, Remi Zaidan

SiD PFA meeting

The general plan

- Likelihood: should include maximum possible information
- Scoring & shower building:
 - First iteration:
 - Skeleton (simultaneous building of tracks)
 - Tight criteria
 - High purity
 - Reasonable efficiency
 - Second iteration:
 - Criteria can include information based on the first iteration
 - Increasing the efficiency
 - Adding the isolated sub-clusters
 - Adding the ambiguous sub-clusters

- The criteria of the score depends from the way that it is used in the shower building
- Both should be optimized at the same time

Shower Reconstruction: First Iteration

How does the first iteration work

Start from each track matched to a seed:

- Order does not matter.
- All linkable clusters are available to all tracks.

Build charged showers for each track:

- Start from a seed.
- Add all links fulfilling a certain criteria.
- Treat each newly added cluster as a seed and iterate.

Criteria:

- Cut on a likelihood-based score.
- Accept only outgoing links.

Likelihood training: good vs bad links

What is a good link:

- According to MC truth, a link from A to B is a good link.
- However, a bad link from A to C will look more "good" in terms of the discriminating variables we have been using in the likelihood!
- Need to somehow train the likelihood not to link directly from A to B, but instead go through X, Y and Z.

Definition: negative and positive poles

Calculating distances:

- Calculating the minimal distance between two clusters is quadratic with the number of hits per cluster.
- Instead, we define for each cluster a negative and a positive pole which are the closest and the farthest hits to the center of the detector.
- Compute the distance between the positive pole of a cluster to the negative pole of the next cluster.
- Calculating the new distance is linear with the number of hits per cluster.

Definition: Interaction field

- We define an "interaction" field between clusters:
 - Positive "attracts" negative.
 - The "force" decrease with distance and angles: the "view field" is from inside out.
 - Two parameters to optimize:
 - How fast the force decrease with distance
 - How fast the force decrease with angle.

Likelihood training: using the "force"

- Use the force to train the likelihood to favor direct links:
 - A link from A to X is a good link if:
 - A and X originate from the same MC particle.
 - X is "attracted" by A more strongly than any other cluster.
- We don't use the force during reconstruction:
 - We only use the force to train the likelihood to link directly to X rather than to B.

Likelihood training: Ecal vs Hcal

The scales in the Ecal and the Hcal are very

different:

 Use separate likelihoods for Ecal and Hcal.

 Clusters in the Muon detector are treated as in Hcal:

> The reason: lack of statistics to create a separate category

Likelihood training: Ecal vs Hcal

A concrete example:

- Distance of closest approach (mm)
- Most of the bad links between Ecal-Ecal clusters are within the good peak of the Hcal-Hcal links.
- Mistakes made in the Ecal are most likely to propagate along with the shower building all the way through the Hcal.

First results of the first iteration

- Too many neutral energy assigned to charged hadrons.
- Especially photons!

Assigned to neutral particles (bin 0) but in reality are from:

Photons

Neutral hadrons

Charged hadrons with no reconstructed track

Charged hadrons

Assigned to charged particles (bin ≥ 1) but in reality are from:

Photons

Neutral hadrons

Charged hadrons with no reconstructed track

A different charged hadron than all the ones assigned to

One of the charged hadrons assigned to

First results of the first iteration

- Too many neutral energy assigned to charged hadrons.
- Especially photons!

Same as the slide before with two colors for clarification:

Correct Assignment

Confusion

Using 2-dimensional PDF's for the likelihood

- Reduced photons confusions.
- More unassigned charged energy

Assigned to neutral particles (bin 0) but in reality are from:

Photons

Neutral hadrons

Charged hadrons with no reconstructed track

Charged hadrons

Assigned to charged particles (bin ≥ 1) but in reality are from:

Photons

Neutral hadrons

Charged hadrons with no reconstructed track

A different charged hadron than all the ones assigned to

One of the charged hadrons assigned to

Using 2-dimensional PDF's for the likelihood

- Reduced photons confusions.
- More unassigned charged energy

Same as the slide before with two colors for clarification:

Correct Assignment

Confusion

Missing charged energy in the Ecal

We looked at the unassigned charged energy:

- Many of these missed clusters are situated along the extrapolation of a track and at a distance of 60-70 mm from the extrapolation of the track to the Ecal entrance.
- This might be due to a problem at the crossing from thin to thick Ecal layers.
- Need to investigate, but for now we decided to pick up those clusters by hand.

Missing charged energy in the Ecal

- Recovered most of the unassigned charged energy.
- Slightly more photons assigned to charged energy.

Assigned to neutral particles (bin 0) but in reality are from:

Photons

Neutral hadrons

Charged hadrons with no reconstructed track

Charged hadrons

Assigned to charged particles (bin ≥ 1) but in reality are from:

Photons

Neutral hadrons

Charged hadrons with no reconstructed track

A different charged hadron than all the ones assigned to

One of the charged hadrons assigned to

Missing charged energy in the Ecal

- Recovered most of the unassigned charged energy.
- Slightly more photons assigned to charged energy.

Same as the slide before with two colors for clarification:

Correct Assignment

Confusion

Dealing with photons.

- Resolving overlap between photons, muons and initial MIP's:
 - Reconstructed photons
 which have common hits
 with muons of initial
 MIP's are removed from
 the photon pool and put
 into the hadron pool
 before starting the
 shower building:
 - Seems to be too strong a criterion as this puts
 1/3rd of the (real) photons back among the hadrons.

Dealing with photons

- Looked at several variables, one was ineteresting:
 - The angle to the closest track.
 - Only call a
 reconstructed
 photon a photon if
 there is no charged
 track within an angle
 of 0.1.

Dealing with photons.

Performance is rather good.

- Still small rate of photon/hadron confusion.
- Now limited by the Photon ID reconstruction.
- Need to estimate how the remaining confusion affects the PFA

6/2/2011 Remi Zaidan 20

Dealing with photons

- Removed most photons from being candidate to hadron shower reconstruction.
- Significantly improved on the photon side

Assigned to neutral particles (bin 0) but in reality are from:

Photons

Neutral hadrons

Charged hadrons with no reconstructed track

Charged hadrons

Assigned to charged particles (bin ≥ 1) but in reality are from:

Photons

Neutral hadrons

Charged hadrons with no reconstructed track

A different charged hadron than all the ones assigned to

One of the charged hadrons assigned to

Dealing with photons

- Removed most photons from being candidate to hadron shower reconstruction.
- Significantly improved on the photon side

Same as the slide before with two colors for clarification:

Correct Assignment

Confusion

Summary at this point

Showing steady improvement so far...

6/2/2011 Remi Zaidan 23

Summary at this point

Showing steady improvement so far...

6/2/2011 Remi Zaidan 24

Thinking about next steps

Building neutral hadrons shower prototypes.

We believe that a first pass on neutral hadron showers would help the neutral/charged separation...

If we are aware of the presence of a nearby neutral shower, we can be smarter in the charged shower building.

