Tracking in Calorimeters Reloaded L. Weuste Max Planck Institut für Physik Excellence Cluster "Universe" München CALICE Collaboration Meeting Sept. 2011 Heidelberg #### Highly Granular Calorimetry **CALICE** Calorimeter prototypes highly granular structure (here: Analog HCal) New possibilities of looking into physics e.g. tracks of MIPs in hadronic showers | | 13 | | 25 | 79 | 37 | 7 9 | 49 | 7 9 | 61 | | | | | |------------------------------|-------------------|-------------------|-------------------|--|--|--|--|--|-------------------|-------------------|-------------------|----|----| | | 13/73 | 19 _{/73} | 25 _{/73} | 31/73 | 37 _{/73} | 43 _{/73} | ⁴⁹ ⁄73 | 55 _{/73} | в1 _{/73} | 67 _{/73} | 73 _{/73} | 79 | | | 1/ | 13 _{/67} | 19 _{/67} | | | | | | 55 _{/87} | | | | | | | ⁷ 61 | 13 _{/61} | 19 _{/81} | 25 _{/β1} | 31/ ₆₁ | 37 _{/81} | 43 _{/81} | 49 _{/81} | 55 _{/β1} | В1 _{/В1} | 67 _{/61} | 73 _{/β1} | 79 | / | | 1/ | 13/ | 19/ | 25 _{/55} | 31 ₅₈ 34 _{/58}
31 ₅₅ 34 _{/59} | 37/58 ¹⁰ /58
37/55 ¹⁰ /55 | ⁴³ /58 ⁴⁶ /58
⁴³ /55 ⁴⁶ /55 | 49/58 ⁵² /58 | 55/58 ⁵⁸ /58 | β1 _{/55} | 67 _{/55} | 73 _{/55} | | 55 | | 1/49 | 13/49 | 19/49 | 25 _{/49} | 31/ ₅₂ 34/ ₅₂
31/49 ³⁴ /49
31/.34/. | 37/52 ⁴⁰ /52
37/46 ⁴⁰ /40 | ⁴³ /52 ⁴⁸ /52
⁴³ /40 ⁴⁸ /40 | 49/52 ⁵² /52 | 55/52 ⁵⁸ /52 | 81/49 | B7/49 | 73 ₄₉ | | / | | | 13/ | 19/ | 25/ | 746 746 | 746 746 | ⁴³ / ₄₈ ⁴⁸ / ₄₈
⁴³ / ₄₃ ⁴⁸ / ₄₃ | 49/48 ⁵² /48
49/43 ⁵² /43 | 55/46 ⁵⁸ /46
55/43 ⁵⁸ /43 | ⁶¹ /43 | 67 _{/43} | 73 _{/43} | > | 43 | | ¹ ⁄ ₃₇ | 13/37 | 19/37 | 25 _{/37} | 31 ₄₀ 34 _{/40} 31 _{/37} 34 _{/37} | ³⁷ /40 ¹⁰ /40
37/3/ ¹⁰ /3/ | ⁴³ / ₄₀ ⁴⁶ / ₄₀
⁴³ / ₃₇ ⁴⁶ / ₃₇ | | 55/40 ⁵⁸ /40
55/37 ⁵⁸ /37 | | | 73 _{/37} | | _ | | 1/ | 13/31 | 19/31 | 25 _{/31} | 31/54 ³⁴ /54
31/51 ³⁴ /51 | 37/34 ¹⁰ /34
37/31 ¹⁰ /31 | 13/51/18/51 | 19/3152/31 | 55/3458/34 | 61/ | 67/ | 73/ | / | 31 | | ¹ ⁄ ₂₅ | 13/25 | 19/25 | 25 _{/25} | 31/25 | 37/25 | 43/25 | 49/25 | 55/25 | B1/25 | 67 _{/25} | 73/ ₂₅ | 79 | _ | | | / 10 | / 10 | < 1 O | / 10 | / 10 | / / 10 | / 10 | Z 4 O | / 10 | / 10 | 73/ ₁₉ | > | 19 | | 13 | 13/13 | 19/13 | ²⁵ ⁄13 | 31/13 | 37/13 | ⁴³ ⁄13 | 49/13 | 55 _{/13} | ⁶¹ /13 | ⁶⁷ /13 | 73/ ₁₃ | | | | ≜ y | ¥ | 19 | 1 | 31 | 1 | 43 | 1 | 55 | 1 | 67 | 1 | | | ### Tracking in the AHCal Already presented in CAN-022 - Nearest Neighbour algorithm - Needs I hit per layer - Based on layer isolated hits, i.e. hits with no adjacent hits in the same layer Plan: Publication (JINST?) Rewrite of code - No fundamental changes - Usage of official geometry classes - Made algorithm more general - Completely recursive implementation - With simplification: No need for special treatment of certain geometric cases - Improving identification of inclined tracks with gaps ### Tracking in the AHCal Already presented in CAN-022 - Nearest Neighbour algorithm - Needs I hit per layer - Based on layer isolated hits, i.e. hits with no adjacent hits in the same layer Plan: Publication (JINST?) Rewrite of code - No fundamental changes - Usage of official geometry classes - Made algorithm more general - Completely recursive implementation - With simplification: No need for special treatment of certain geometric cases - Improving identification of inclined tracks with gaps ### Tracking in the AHCal #### Already presented in CAN-022 - Nearest Neighbour algorithm - Needs I hit per layer - Based on layer isolated hits, i.e. hits with no adjacent hits in the same layer - Plan: Publication (JINST?) - Rewrite of code - No fundamental changes - Usage of official geometry classes - Made algorithm more general - Completely recursive implementation - With simplification: No need for special treatment of certain geometric cases - Improving identification of inclined tracks with gaps ### Example events ## Example events ### Track multiplicity / Track length For Run 330325 — 25 GeV pi- On average: 2.01 tracks / evt Old tracker (different 25 GeV run):I.6 tracks / evt Exponentially decreasing tracklength \rightarrow hadronic interaction length λ_0 Quick estimation of λ_0 (straight, primary tracks): $$\lambda_0 = 8.1 \text{ layers}$$ $$\lambda_{0,PDG} = 8.88 \text{ layers}$$ #### Track segments by MIPs: Langau Energy deposition of MIPs: — Landau ⊗ Gauss: "Langau" Similar Fit like in FitMip package: - MPV = 1.08 GeV (all tracks) Energy deposition higher for inclined tracks MPV = 0.99 GeV (straight tracks) Run 331333: 60 GeV Pion #### Track segments by MIPs: Langau Energy deposition of MIPs: — Landau ⊗ Gauss: "Langau" Similar Fit like in FitMip package: -- MPV = 1.08 GeV (all tracks) Energy deposition higher for inclined tracks MPV = 0.99 GeV (straight tracks) Run 331333: 60 GeV Pion #### Langau MPV: Track angle dependence Longer distance @ inclined tracks higher E_{dep} -[expected: E_{dep} ∝ I/cos φ #### Track finding: Imperfections #### Nearest Neigbour Algorithm - No usage of physical flight trajectory - Noise hits influence track direction #### Solution: - Track Fitting - More advanced algorithms - However: No/Small influence for - Straight/primary tracks - MC ⇔ Data comparison #### Track finding: Imperfections #### Nearest Neigbour Algorithm - No usage of physical flight trajectory - Noise hits influence track direction #### Solution: - Track Fitting - More advanced algorithms - However: No/Small influence for - Straight/primary tracks - MC ⇔ Data comparison #### Publication Plan - Description of algorithm - Monte Carlo ↔ Data comparison - observables - track multiplicity / event - track length - track angle - physics lists - LHEP, CHIPS - FTF BIC, FTFP BERT |
QGSP | BERT (| TRV), | QGSP | BERT | CHIPS, | QGSP | FTFP | BERT, | QGS | BIC | |----------|--------|-------|------|------|--------|------|------|-------|-----|-----| - ... (suggestions)? - energy range: 10 to 80 GeV (same run list as software compensation paper) maybe: track length of primary, non inclined tracks \rightarrow nuclear interaction length? | Run | energy [GeV] | particle | |--------|--------------|----------| | 330777 | 10 | π- | | 330328 | 15 | π- | | 330327 | 18 | π- | | 330649 | 20 | π- | | 331340 | 30 | π+ | | 330551 | 35 | π- | | 330412 | 40 | π- | | 330559 | 45 | π- | | 330391 | 50 | π- | | 331655 | 60 | π- | | 331567 | 80 | π+ | #### Backup: Tracking Algorithm For each isolated hit as track start: - Collect isolated hits in the consecutive 2 layers - Sort them by distance to track start - Search for tracks with each of these as new track start point - Avoid double counting of hits - (Here: Hit I will use Hit 2a in its track, hence there is no possibility to start an independent track from Hit 2a) - Merge with longest track #### Backup: Tracking Algorithm For each isolated hit as track start: - Collect isolated hits in the consecutive 2 layers - Sort them by distance to track start - Search for tracks with each of these as new track start point - Avoid double counting of hits - (Here: Hit I will use Hit 2a in its track, hence there is no possibility to start an independent track from Hit 2a) - Merge with longest track #### Backup: Tracking Algorithm — For each isolated hit as track start: - Collect isolated hits in the consecutive 2 layers - Sort them by distance to track start - Search for tracks with each of these as new track start point - Avoid double counting of hits - (Here: Hit I will use Hit 2a in its track, hence there is no possibility to start an independent track from Hit 2a) - Merge with longest track