Status of the Calorimeters

Mark Mattson
Wayne State University
for the CDF Calorimeter Group

CALOR 2006
June 5, 2006
Plan

• CDF II calorimetry
 • Mix of systems made during Run I, before Run II, and upgrades since the beginning of data taking
 • Not discussing the muon detectors, miniplug (extreme forward calorimeters), or the EM-timing system (talk by Max Goncharov after the coffee break)
 • Talks on specific systems were made at multiple conferences (CALOR02, Snowmass05, etc.)

• Operational experience
 • Problems discovered during data taking

• Selected recent physics results
 • Demonstrate the calorimeter capabilities
CDF II Calorimeters

- Phi - 15 degree wedges
- Same Central and Endwall calorimeters from Run I (scintillator plate with WLS bars)
- New for Run II
 - Plug Calorimeter: scintillator tile with WLS fibers replaced the Run I gas calorimetry
 - EM and HAD readout electronics
- Fall 2004
 - Central Preshower and Crack Detectors
Plug Calorimeter

Side view of the east end plug, the WHA, and portions of the solenoid, CEM, and CHA.
Similar Technology for Plug and Central Calorimeters

<table>
<thead>
<tr>
<th></th>
<th>Central (Endwall)</th>
<th>Plug</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM lead-scintillator sampling</td>
<td>18 radiation lengths</td>
<td>23.2 radiation lengths</td>
</tr>
<tr>
<td></td>
<td>$\sigma_E/E = 13.5%/\sqrt{E} \oplus 1.5%$</td>
<td>$\sigma_E/E = 16%/\sqrt{E} \oplus 1%$</td>
</tr>
<tr>
<td></td>
<td>$</td>
<td>\eta</td>
</tr>
<tr>
<td>HAD steel-scintillator sampling</td>
<td>4.7 interaction lengths</td>
<td>6.8 interaction lengths</td>
</tr>
<tr>
<td></td>
<td>CHA $\sigma_E/E = 50%/\sqrt{E} \oplus 3%$</td>
<td>$\sigma_E/E = 80%/\sqrt{E} \oplus 5%$</td>
</tr>
<tr>
<td></td>
<td>WHA $\sigma_E/E = 75%/\sqrt{E} \oplus 4%$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$</td>
<td>\eta</td>
</tr>
<tr>
<td>Shower Maximum (ES)</td>
<td>PWC for phi scintillating strips for Z ~ 2 mm res for W electrons</td>
<td>2 layers scintillating strip/WLS fiber 1.5 mm wire res</td>
</tr>
<tr>
<td>Pre-Shower (PR)</td>
<td>12.5 x 12.5 x 2 cm tiles</td>
<td>1 cm thick tiles shadow PEM towers</td>
</tr>
</tbody>
</table>
• CPR - Central Pre-Radiator, tile-fiber system similar to the Plug

 • Occupancy of existing gas Pre-shower would have been too high

 • CCR - Central “Crack” gas detector

 • 7% of phi angle at edges of the wedges recovered

Steve Kuhlmann
(Argonne National Laboratory)

presented by: G. Introzzi (INFN & Univ. of Pavia)

ILC workshop - Snowmass - August 23, 2005
Pre-shower / Crack Detectors
Front End Readout Electronics

- 800 GeV range
- Low noise: 5-6 MeV for PEM/PHA
- 132 nsec charge integration
- QIE6: 10 bit ADC
- 4416 CAFÉs in detector hall
Readout Electronics

- Holds all of the CAFE cards for a wedge of the system
- Digital tower sums for L1 trigger
- Nearly no deadtime
- 240 ADMEMs in detector hall
FER Operational Issues

- 132 nsec charge integration gate collects 93.6% (HAD) or 97.4% (EM) of the charge
- CALOR02 reported failure rate
 - CAFE ~0.65% per year, (~30 units)
 - ADMEM ~3% per year (~8 units)
- Current failure rate is about half of that
 - would be even less, if not for the rare unscheduled power outages

150 GeV test beam PHA
FWHM 20 nsec
Jet Energy Scale

- “Determination of the Jet Energy Scale at the Collider Detector at Fermilab”, NIMPR accepted (hep-ex/0510047)
- EM tested with Z -> ee
- Had tested with 60 GeV pion test beam
Jet Energy Scale

- Pedro Movilla Fernandez will discuss the CDF calorimeter simulation
- Z mass stable versus time to within 0.3%
- Mean muon energy from $W\rightarrow\mu\nu$ candidates within 1.5%
- For more information, refer to the paper

April 2002 - September 2004
Cross-talk for MAPMT

- Gap between fiber cookie and MAPMT for the PES was slightly larger than expected
 - 2.5mm, compared to 1mm for test stand
- 1 mm fibers
- Cross-talk was 6%, expected ~0.5%
- Installed baffles ("blinders")
 - Crosstalk ~ 1.4%
 - Signal reduction 8.5%
Plug PMT gain loss

- Monitor light energy response decrease, due to scintillator and PMT aging
- Unexpected PMT gain loss, largest for towers near the beamline
- Plug laser and radioactive source calibrations reveal that it is not from scintillator aging
- Not seen in the plug showermax (PES) or pre-shower (PPR) detectors

Losing light (as is CEM), WHA faster, but should last a few more years!
PMT Gain Loss

- Reduce integrated charge
- Lower gains for high eta tubes
- Leave HV on standby during beam scraping
- Didn’t eliminate the problem, but gain loss is acceptable for running through 2009
- Low eta towers: 1% loss in 2002, 3% loss in 2003
- High eta towers: ~20% loss in 2002, 8% loss in 2003
- Not completely understood

Tower gain drops seen in laser calibration in a 3 month span in 2002
Selected Results

“Top Quark Mass Measurement Using the Template Method in the Lepton + Jets Channel at CDF II”

“Measurement of the forward-backward charge asymmetry of electron-positron pairs in pbar-p collisions at \(\sqrt{s}=1.96 \) TeV”

PRD 71, 052002 (hep-ex/0411059)

Recent update with 5x integrated luminosity

preliminary

http://www-cdf.fnal.gov/physics/ewk/2006/afb
“Measurement of $\sigma(p-p\bar{p} \rightarrow W) \times BR(W \rightarrow e\nu)$ with electron identified by the Plug Calorimeter ($1.2 < \eta < 2.8$)"

preliminary

http://www-cdf.fnal.gov/physics/ewk/2006/plugw

Cross-section consistent with results using electrons in the Central Cal only. Missing E_T resembles the electron P_T, overall measurement of recoil is good.
In Closing...

- Plug Calorimeter has been operating since the beginning of Run II
- All calorimeter upgrades for Run II have been completed
 - During the recent extended shutdown, only maintenance and fixes for dead channels
- Expect more results to take advantage of the upgrades
 - 380/pb --> Sept 2004
 - Results with up to 1/fb