Electrical Properties of MPPC/SiPM/GMAPD's

Adam Para June 24, 2011

Motivation

- MPPC/SiPM/GMAPD are avalanche diodes biased in the reverse direction and operated in a Geiger mode (so we think)
- Their behavior depends on the electrical properties of a cell: resistance and capacitance, hence it is important to measure these properties for different detectors we are trying to understand

Detectors:

- 1 mm x 1 mm, 20μ pixel 025U, 50μ pixel 050U, 100μ pixel (100U)
- □ 3 mm x 3 mm, 50μ pixel, 050PX

Ideal Diode (Shockley)

 $I = I_{\rm S} \left(e^{V_{\rm D}/(nV_{\rm T})} - 1 \right),$ Current in the forward direction, where

$$V_{\rm T} = rac{kT}{q}$$
, thermal voltage
 $I_{\rm S} = eA\left(\sqrt{rac{D_{
m p}}{ au_{
m p}}}rac{n_{
m i}^2}{N_{
m D}} + \sqrt{rac{D_{
m n}}{ au_{
m n}}}rac{n_{
m i}^2}{N_{
m A}}
ight)$, sature

saturation current

We have a quenching resistor in series with the diode

$$V_{source} = V_{diode} + V_{resis \tan ce} = V_T \ln(\frac{I}{I_S} + 1) + RI$$

HAMAMATSU 025U

1 mm x 1 mm, 1600 pixels

- the same data in a linear and logarithmic scale
- •I-V characteristics measured at temperatures from -60C to +50C
- Shockley equation provides a very good description of the measured I-V curves over 5 orders of magnitude
- slopes of the lines on a linear plot => total resistance
- Assuming the parasitic resistance is small, the quenching resistance $R_q = N_{pixel} \times R_{dev}$
- slopes of the lines on the log plots => thermal voltage
- vertical offset on the logarithmic plot => saturation current
- all parameters change with temperature

I-V Diode Only

Quenching Resistance

Quenching resistor gets smaller as the temperature rises (polysilicon!) Non-linear dependence of the quenching resistance on temperature

Thermal Voltage

fitted values of the thermal voltage change linearly with temperature, as expected
quenlity factor n very close to 1 (1.04)

Saturation Current

Saturation current varies by 10 orders of magnitude. Presumably related to dark pulses rates

HAMAMATSU 050U

1 mm x 1 mm, 400 pixels

HAMAMATSU 100U

1 mm x 1 mm, 100 pixels

HAMAMATSU 050PX

3 mm x3 mm, 3600 pixels

COMPARISON OF DETECTORS

Quenching Resistance

50U and 100U have very similar quenching resistor
25U has about twice as big
50PX has the resistor 50% higher then 50U

Thermal Voltage

25U, 50U and 100U
have 'the same diode'
50PX diode seems
to be somewhat
different

Saturation Current

25U, 50U and 100U
have 'the same diode'
50PX diode seems
to be somewhat
different