HLRF R&D Towards the TDR

Christopher Nantista ML-SCRF Webex meeting June 29, 2011

Klystron Cluster Scheme Tests

0.48 m diameter, pressurized aluminum pipe resonantly powered to ~280 MW TE_{01} mode field equivalent in 1 ms pulses @ 5 Hz.

High Power Test History of "Big Pipe"

Resonance Measurement of "Big Pipe"

Measured Q_0 is only ~59-65% of theoretical estimate (226,450).

Experimental System

On the order of 600 kW input for ~75 MW traveling waves w/ finite number of breakdowns

of propagating modes: highest propagating mode: highest prop. TM mode:

* including x-polarizations

"Scorched" Flange Faces

Photos provided by Sam Chu

Flange Crumbs

H 100

onal SEM V4.02i Jun 15, 2011 sonal SEM V4.02: Jun 15, 2011 rjl 1.0 mm 15.0 kV 20 mm 29.1% spot 29.1% spot 15.0 kV 20 mm DT-2 % CPS-203 FD-214 LT-48 VFS- 413 (manual) 44X X=117 Y=101 T-2 % CPS-150 FD-141 LT-63 FS= 413 (manual) 40X X=199 V= H 100 3.00 10.2 0.00

Images and SEM analysis provided by Lisa Laurent

Flange Gap Fields

TE₀₁ fields should not extend into a gap between flanges.

However, fields of parasitic modes will.

Gap modes near operating frequency can be strongly excited by even low levels of parasitic modes.

O-ring & rf seal grooves bring flange modes down into range.

 $|\mathbf{H}|$

E

TM₁₁ 0.025" gap mode: 1.3154 GHz

Flange Mode Gap Dependence

Flanges designed to touch, assuming vacuum, but switch to pressurization could introduce/widen gaps.

At proper spacing, modes cross 1.3 GHz.

SOLUTION: Clean and remachine flanges so as to pre-stress i.d. lip. Retest at high-power and confirm solution before finalizing 80m pipe order. Transmission tests are also planned, as well as inclusion of bend.

Bend Design Comparison

	Taper Bend	4 Channel Bend	Step Taper Bend
axis-face distance (R _{eff})	39.859"	32.873"	45.181"
simulated transmission	99.698%	99.994%	99. 9841%
E _s _{max} (@300 MW)	3.66 MV/m	3.69 MV/m	3.228 MV/m
H _s _{max} (@300 MW)	8.51 kA/m	10.65 kA/m	13.79 kA/m
maximum parasitic mode	-28.1 dB	-51.7 dB	-43.1 dB
mismatch (TE ₀₁ reflection)			

Fabrication

Fabricate in 3 assemblies (each in multiple parts).

U-bend configuration Connect w/ custom for resonant ring. pressure/rf gaskets. (003 R (3.837) 3.960 (Ø22.88) Ø15 270) (Ø18.898) R.500 7.315" 30.195" (R 500) (3.837) (3.960) (Ø22.88) 015.270) Ø18.898) (R 500)

2nd Local PDS (Power Distribution System) for NML

Difference largely attributable to isolators, found in earlier tests to have a transmission loss of ~1.6% (0.07dB).

First 2-feed assembly connected to klystron and ready for high-power testing.

Marx Modulator and Toshiba MBK Testing

Marx Performance from 05/30/2011 - 06/05/2011

3 total faults: 0 klystron (0.00/day), 2 modulator (0.38/day)

