Building a hadron calorimeter prototype with SCG1-C glasses

Presented by D. Cauz, on behalf of the Udine group University and INFN of Udine 12th Aug 2011, Fermilab

SCG1-C glass

- By Ohara Optical Glass, Inc. ⁽¹⁾
- Density is 3.36 g/cm^{3 (3)}
- Radiation length is 4.26 cm ⁽³⁾
- Interaction length is 44.5 cm (for pions with 30-200 GeV energy) ⁽³⁾
- Reminder for the simulation: for protons λ is shorter than for pions
- Refraction index: *n*=1.61 ⁽⁴⁾
- Cherenkov emission angle θ_c =51.6°
- Scintillation decay time: 70 ns ⁽²⁾
- Cherenkov to scintillation signal: C/S=40/60 ⁽²⁾

salt	Percent (by weight) ⁽¹⁾		
BaO	43.4%		
SiO_2 (α -quartz)	42.5%		
Li ₂ O	4.0%		
MgO	3.3%		
K ₂ O	3.3%		
Al ₂ O ₃	2.0%		
Ce ₂ O ₃	1.5%		

- (1) B. Cox, et al., IEEE Transactions on Nuclear Science, Vol. NS-30, No 1, 1983
- (2) G.E. Theodosiou, et al., IEEE Transactions on Nuclear Science, Vol. NS-31, No 1, 1984
- (3) L. Antoniazzi, et al., The Experiment 705 Electromagnetic Shower Calorimeter, FERMILAB-Pub-93/001 E705, 1993
- (4) Estimated from Y. Yoshimura, et al., Nucl. Instr. and Meth. 137 (1976), 57

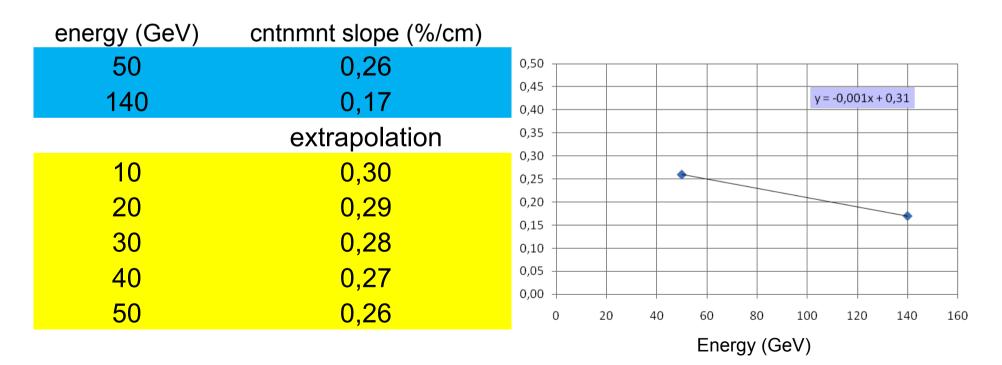
Glass inventory

 I found 74 'big' but only 161 out of 212 'small' glasses in the store place

type	Dimensions (cm ³)	#	# found
Main array big	15 x 15 x 89	74	74
Main array small	7.5 x 7.5 x 89	92	
Active converter	7.5 x 7.5 x 97.5	120	
total		74 + 212	74 + 161

- We are short of glass for full containment
- We have to content ourselves of partial containment and then correct for leakage

95% lateral containment


 Lateral containment of the shower at the 95% level, is given by a formula taken from (*)

$$R_{95\%} = \lambda (0.29 + 0.30u) = 13.22 + 0.30x$$
$$(E = 10 GeV)$$

where the value of the *slope parameter* has been *linearly extrapolated* from the data at 50 and 140 GeV (see next slide) and the intercept parameter has been considered to be *independent* of energy

- x is the longitudinal coordinate and $u = x/\lambda$
- In 3-D this formula represents a truncated cone
- (*) R. Frühwirth et al., Data Analysis Techniques for High-Energy Physics, Cambridge Monographs, edition 2000, pag. 199.

Slope parameter $R_{95\%} = \lambda (0.29 + 0.30u) = 13.22 + 0.30x$ (E = 10 GeV)

Longitudinal containment (Fabjan)

 Longitudinal containment of the shower at the 95% level, is given by a formula taken from (*)

x = x + 2.5x

• where
$$x_{max} = \lambda (0.7 + 0.2 \log E)$$
 $x_{att} = \lambda E^{0.13}$

- $x_{95\%}$ fits the available data to within 10% for *E* in the range few GeV few 100 GeV
- x_{max} describes the position of the shower maximum
- x_{att} describes the exponential decay of the shower beyond x_{max}

(*) C.W. Fabjan, Calorimetry in High-Energy Physics, in *Techniques and Concepts of High-Energy Physics III*, editor T. Ferbel, Plenum Press, 1985, pag. 297.

Longitudinal containment (Fabjan)

• We can go as high as 10 GeV and attain 95% containment

		Lengths in c	m	
E(GeV) 10 20 30 40	x_max 52 58 61 64	x_att 60 66 69 72	x_95% 202 222 235 244 251	miss.glass.lngth 1.2 21.5 34.0 43.2
50	66	74	•	50.5 missing glass to attain tudinal containment

Longitudinal containment (Wigmans)

 But according to Wigmans we can even attain something like 98% containment at 10 GeV with the glass we have

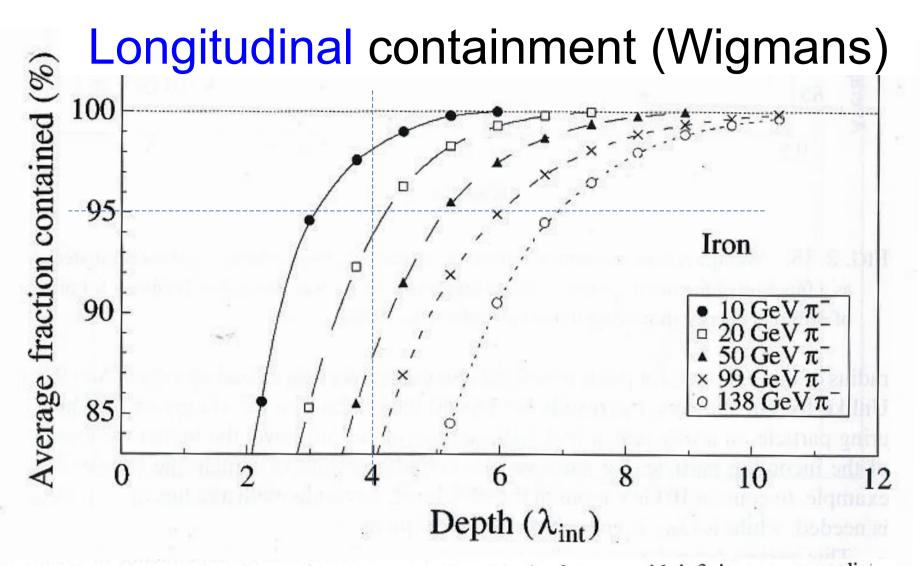
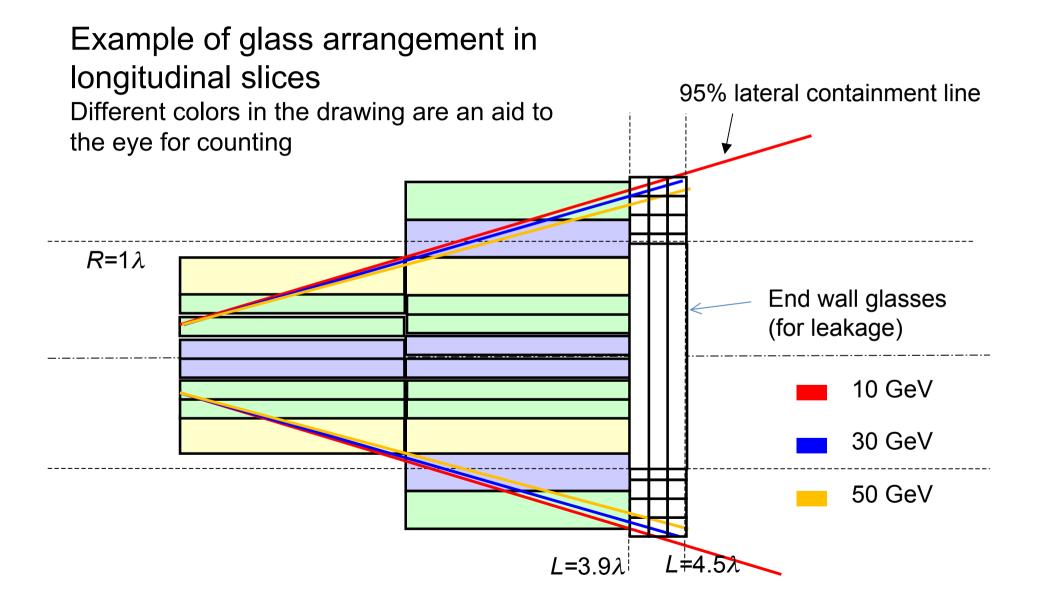
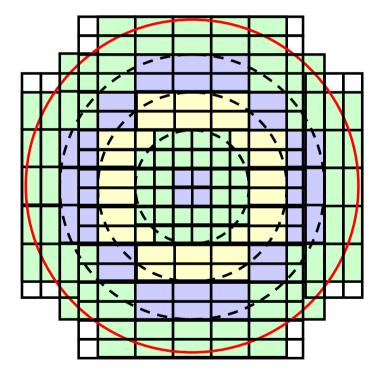
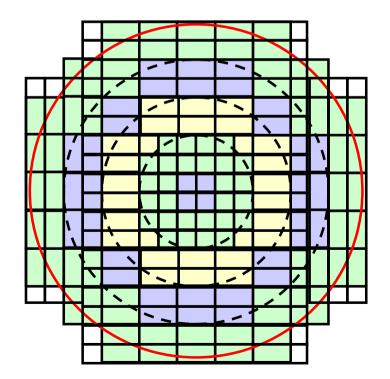




FIG. 2.37. Average energy fraction contained in a block of matter with infinite transverse dimensions, as a function of the thickness of this absorber, expressed in nuclear interaction lengths. Shown are results for showers induced by pions of various energies in iron absorber [Abr 81].
Figure taken from R. Wigmans, Calorimetry, Oxford Science Publications. See bibliography wherein.

Putting glasses together, longitudinally

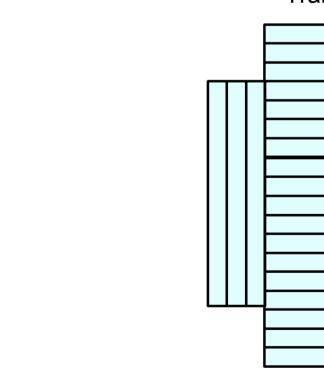


Putting glasses together, radially

Example of glass arrangement in 'concentric' radial sheaths Different colors in the drawing are an aid to the eye for counting

sheath (radial)	# sm gl./sheath	# big gl./sheath	# slices (long.)	total # sm gl.	total # big gl.
1	4	0	2	8	0
2	28	0	2	56	0
3	4	12	2	8	24
4	0	16	1	0	16
5	0	32	1	0	32
total	end-wall	excepted		72	72

Different colors in the drawing and table are an aid to the eye for counting


GLASS BUDGET 212 (161) + **74**

Longitudinal leakage: end-wall glasses

• Three longitudinal layers of 24 glasses each for a total of 72 glasses (it amounts to 22.5 cm only, in depth)

Longitudinal view

Transverse view

Lateral leakage

 To study the lateral leakage, we will use the outermost glasses of the stack in the radial direction

Conclusions

- A Geant-based simulation is underway (see Anna's talk)
- It can helps us to choose the best shape and radial, longitudinal dimensions