Update on Mistag in 5GeV Single γ Events Elizabeth Brost, Jim Brau, and Chaowaroj Wanotayaroj SiD PFA Meeting 8/18/2011 #### Last Time We found that more than 10% of 50GeV single photon events were being reconstructed incorrectly. | 50 GeV γ (4350 events) | 0 photons | 1 photon | 2 photons | 3+ photons | |------------------------|-----------|----------|-----------|------------| | 0 KOL's | 2 | 3502 | 52 | 0 | | 1 KOL | 272 | 485 | 4 | 0 | | 2 KOL's | 6 | 20 | 0 | 0 | | 3+ KOL's | 2 | 4 | 1 | 0 | We believe that this mis-identification of particles will affect the energy resolution. #### The Current Study - We chose to study 5GeV single photon events, because 5GeV photons are more common in jets. - Also, these showers rarely make it all the way to the HCAL, thus removing one possible reason why the particles would be reconstructed as K⁰₁'s instead of photons. #### 5000 5GeV Single γ Events | 5 GeV γ (5000 events) | 0 photons | 1 photon | 2 photons | 3+ photons | |-----------------------|-----------|----------|-----------|------------| | 0 K0L's | 12 | 4165 | 391 | 10 | | 1 K0L | 145 | 221 | 14 | 4 | | 2 K0L's | 8 | 26 | 2 | 0 | | 3+ K0L's | 1 | 1 | 0 | 0 | #### **Outcomes of Interest:** - Only One Photon - Only One K⁰_L - Two Photons (really $\gamma \rightarrow e+e-$) - One Photon and One K⁰₁ - Split transversely - Split longitudinally #### Only One Photon First plot - energy deposited in the ECAL by the photon vs. the distance from the IP. Second plot - the position of the photon. ### Only One K⁰_L First plot - energy deposited in the ECAL by the K_{L}^{0} vs. the distance from the IP. Second plot - the position of the K_{\perp}^{0} . #### Two "Photons" ($\gamma \rightarrow e + e -$) First plot - energy deposited in the ECAL by the photons vs. the distance from the IP. Second plot - the positions of the first and second photons. #### One Photon and One K⁰_L First plot - energy deposited in the ECAL by the photon and the K_{L}^{0} vs. the distance from the IP. Second plot - the position of the photon and the K_{L}^{0} . Notice the one hit really far from all of the others that is part of the K_{L}^{0} . ### Photon first, then K⁰_L The first plot shows the amount of energy deposited in the ECAL by the photon and the K^0_L vs. the distance from the IP. All of the hits on the Z vs. Phi plot (above right) are in roughly the same space, except for a few of the dark blue ones (which are in the beginning of what is called a K^0_L). Perhaps this spreading-out is what causes the algorithm to tag the second half of this shower as a K^0_L ? 10 #### Photon first, then K⁰_L (reaches HCAL) First plot - energy deposited in the ECAL by the photon and the K_{\perp}^{0} vs. the distance from the IP. (There is some leakage into the HCAL in this event) Second plot - the position of the photon and the K_L^0 . (They are on top of each other.) # Testing the Hypothesis – One Photon AND One K⁰_L events #### Hits outside the cylinder **Result:** The " K^0_L " contains more hits outside of the cylinder. It is clear that the part of the shower tagged as a K^0_L is more spread out.