
 
ILD Tracking – Framework 
Status 
  Steve Aplin 
    DESY 
 
 ILD Software Meeting   
  24th August 2011 
 



24 August 2011 Steve Aplin       ILD Tracking – Framework Status          ILD Software Meeting 2 

•  Current Status 

•  Plans 
 



IMarlinTrack and IMarlinTrkSystem 

24 August 2011 Steve Aplin       ILD Tracking – Framework Status          ILD Software Meeting 3 

 
•  IMarlinTrack  

–  interface class to provide access to track fitting and track parameter 
propagation in Marlin 

–  uses LCIO for both input and output 

•  IMarlinTrkSystem 
–  responsible for managing the necessary infrastructure such as geometry for 

the track fitting  
–  controlling the configuration of the fitting package 

 



IMarlinTrack and IMarlinTrkSystem 

24 August 2011 Steve Aplin       ILD Tracking – Framework Status          ILD Software Meeting 4 

•  IMarlinTrack interface extended to be more convenient when using an iterative 
fitter. 

•  Additional Methods provided: 

//** initialise the fit using the supplied hits only, using the given order to determine the direction of the track 
virtual int initialise( bool direction ) = 0 ;  
 
//** initialise the fit with a track state  
virtual int initialise( const IMPL::TrackStateImpl& ts) = 0 ; 
 
//** update the current fit using the supplied hit, return code via int. Provides the Chi2 increment to the fit from 
adding the hit via reference.  
virtual int addAndFit( EVENT::TrackerHit* hit, double& chi2increment, double maxChi2Increment=DBL_MAX ) = 0 ; 
 
//** get track state, return code via int 
virtual int getTrackState( IMPL::TrackStateImpl& ts ) = 0 ; 
 
//** get track state at measurement associated with the given hit, return code via int 
virtual int getTrackState( EVENT::TrackerHit* hit, IMPL::TrackStateImpl& ts ) = 0 ; 

        continued … 

 



IMarlinTrack and IMarlinTrkSystem 

24 August 2011 Steve Aplin       ILD Tracking – Framework Status          ILD Software Meeting 5 

//** propagate track state at measurement associated with the given hit, the fit to the point of closest approach to 
the given point.  
virtual int propagate( const gear::Vector3D& point, EVENT::TrackerHit* hit, IMPL::TrackStateImpl& ts) = 0 ; 
 
//** propagate track state at measurement associated with the given hit, to numbered sensitive layer, returning 
TrackState via provided reference 
virtual int propagateToLayer( bool direction, int layerNumber, EVENT::TrackerHit* hit, IMPL::TrackStateImpl& ts) 
= 0 ; 
 
//** extrapolate track state at measurement associated with the given hit, to the point of closest approach to the 
given point.  
virtual int extrapolate( const gear::Vector3D& point, EVENT::TrackerHit* hit, IMPL::TrackStateImpl& ts) = 0 ; 
 
//** extrapolate track state at measurement associated with the given hit, to numbered sensitive layer, returning 
TrackState via provided reference  
virtual int extrapolateToLayer( bool direction, int layerNumber, EVENT::TrackerHit* hit, IMPL::TrackStateImpl& ts) 
= 0 ; 
 
//** extrapolate track state at measurement associated with the given hit, to numbered sensitive layer, returning 
intersection point in global coordinates  
virtual int intersectionWithLayer( bool direction, int layerNumber, EVENT::TrackerHit* hit, gear::Vector3D& point) 
= 0 ; 
 
 
 
 
 
 



Marlin and KalTest  

24 August 2011 Steve Aplin       ILD Tracking – Framework Status          ILD Software Meeting 6 

•  MarlinTrk and MarlinTrkProcessors packages provided in the 
MarlinReco svn repository: 

–  MarlinTrk – this contains the interface classes as well as the 
implementation of the interfaces, presently only for KalTest  

–  MarlinTrkProcessors – Contains example Processors which use the 
functionality provided in MarlinTrk. Presently an example Refitter 
processor is provided as well as simple planar digitiser, demonstrating how 
to use the new TrackerHitPlane class, as well as the use of CellID0 for the 
track reconstruction. 



Marlin and KalTest  

24 August 2011 Steve Aplin       ILD Tracking – Framework Status          ILD Software Meeting 7 

•  Currently implementations of the VXD, TPC and FTD sub-detectors are 
provided in KalDet. 

•  The description of the FTD in GEAR (FTDParametersImpl) has been 
provided by Jordi Duarte, which he has implemented in the Mokka driver 
SFtd06. 

•  For the SIT, SET and ETD we are currently working with Aurore et al. to get 
the description in GEAR and write this out in Mokka during the construction 
of the detectors.  

•  For the SIT and SET a first shot at this has been to rename the 
VXParamters and VXDLayerLayout to ZPlanarParameters and 
ZPlanarLayerLayout in GEAR. 



Marlin and KalTest  

24 August 2011 Steve Aplin       ILD Tracking – Framework Status          ILD Software Meeting 8 

•  By last months meeting mainly only the fitting methods had been 
implemented using Marlin and KalTest 

•  This has now been extended to provide almost the complete 
interface, e.g. extrapolateToLayer which is very useful during  
PatRec, as well as the recently added methods mentioned above. 

•  Currently the only methods missing are those which involve 
navigating to “xxxNextLayer”, e.g. 

 virtual int intersectionWithNextLayer( bool direction, EVENT::TrackerHit* hit, int& layerNumber,  
 gear::Vector3D& point) = 0 ; 

•  This is due to the fact that it is not straight forward in many areas of 
the detector, and requires dedicated navigation for effective 
implementation. 



Cell ID Numbering 

•  MarlinKalTest now uses the CellID Numbering scheme as shown by 
Frank in the previous talk. 

 Sub-detectors: VXD, SIT, TPC, SET, FTD, ETD  

24 August 2011 Steve Aplin       ILD Tracking – Framework Status          ILD Software Meeting 9 

Cell encoding of CellID0 in LCIO TrackerHits 
and SimTrackerHits for ILD DBD 
 
Sub detectors: VXD, SIT, TPC, SET, FTD, ETD. 
 
We will always store CellID0, which will include the following 
mandatory fields: (the names of the keys are representative and if 
you can find a better wording please comment) 
 
The use of CellID1 will be left free for the use of the sub-detectors, 
but this should be well documented, with the encoding provided 
through a header file available throughout the software infrastructure.   
 
nbits key use 

5 subdet these ID's will be assigned centrally 
2 side signed to allow us to store +1 and -1 for 

forward detectors and 0 for barrel 
9 layer provides a maximum of 512 layers 

easily sufficient for the TPC, indexed in 
increasing r for barrel, increasing |z| for 
forward 

8 module refers to the assembly holding the 
sensors, e.g. ladder in the case of VXD 
and SIT and SET, and Petal in FTD 
indexed in increasing phi 

8 sensor refers to the element containing a group 
of channels with a common local 
coordinate system e.g. a wafer 

 
For the encoding decoding we will use the following LCIO classes: 
 
UTIL::CellIDDecoder< T > 
UTIL::CellIDEncoder< T > 
 
This will ensure that the LCIO Collection will have the encoding string 
added to the Collection parameters. This string provides the keys and 
the number of bits for the fields, and whether the field is signed. 



Plans 

24 August 2011 Steve Aplin       ILD Tracking – Framework Status          ILD Software Meeting 10 

•  Add remaining Silicon Detectors to KalDet 

•  Start with the re-writing of Silicon Tracking. 

•  Clupatra is being adapted to use the MarlinTrk package.  



Summary 

24 August 2011 Steve Aplin       ILD Tracking – Framework Status          ILD Software Meeting 

•  Updated implementations of MarlinTrk and MarlinTrkProcessors 
provided in svn: 
–  https://svnsrv.desy.de/public/marlinreco/MarlinTrk/trunk 
–  https://svnsrv.desy.de/public/marlinreco/MarlinTrkProcessors/trunk 
–  These now provide, both fitting code and the necessary 

intersection, extrapolation and propagation methods needed for 
pattern recognition 

•  Have now agreed on the use of CellID0 and CellID1. 

•  Move forward with the Pattern Recognition: this requires digitisers 

11 


