

LCIO 2.0 Status and open issues

Frank Gaede, DESY Software Common Task Group Meeting, Sep 8, 2011

LCIO repository moved to SVN

svn webinterface:

manual

web page

checkout released versions:

svn co svn://svn.freehep.org/lcio/tags/v01-60 v01-60

checkout HEAD version:

svn co svn://svn.freehep.org/lcio/trunk trunk

old CVS still works for checkout of released versions!

LCIO 2.0 - new features

- LCIO 2.0 (AKNA LCIOv2) is planned for some time now
- goal is to improve LCIO while still being backward compatible
- planned/requested features:
- direct access to events -> Done
- partial reading of events -> postponed
- splitting of events over files -> postponed
- storing of (arbitrary) user classes -> currently not planned
- simplify using LCIO with ROOT -> Done
 - (ROOT macros, TTreeViewer, I/O (?) ,...)
- improving the event data model -> Done
 - (1d,2d hits, tracks/trajectories)

cleanup of build systems

- C++
 - remove old Makefiles have CMake only

Done!

- Java
 - remove old ant scripts
 - have Maven only
 - -> include Maven in release

- no dependency for C++
- -> Maven plugin for creating header files only once
 - interesting for developers (no rebuild after install)

extensions of MCParticle

- add spin information:
 - float[3] getSpin()
- add color flow information

Done!

- int[2] getColorFlow()
 - are these pointers to other MCParticles (indices) ?
- -> both copied from stdhep/HepEvt4 as written by Whizzard
- user request:
 - have simProcessId for particles that decayed in simulator
 - -> will use lower 16 bits of SimStatus word + collection parameters:
 SimProcessID, SimProcessName
 - short getSimProcessID()
 - need to define details of processIDs

should be postponed to next minor release!

implement this in Mokka and SLIC the same way

Track with multipleTrackStates

- Track now has multiple TrackStates
- canonical TSs:
 - TrackState::AtIP, AtFirstHit, AtLastHit, AtCalo, AtVertex, AtOther
- TS returned either by
 - identifier
 - or closest to given point
- mostly backward compatible (isReferencePointPCA dropped)

virtual	~TrackState () Destructor.
virtual int	getLocation () const =0 The location of the track state.
virtual float	getD0 () const =0 Impact paramter of the track in (r-phi).
virtual float	getPhi () const =0 Phi of the track at the reference point.
virtual float	<pre>getOmega () const =0 Omega is the signed curvature of the track in [1/mm].</pre>
virtual float	getZ0 () const =0 Impact paramter of the track in (r-z).
virtual float	getTanLambda () const =0 Lambda is the dip angle of the track in r-z at the reference point.
virtual const FloatVec &	getCovMatrix () const =0 Covariance matrix of the track parameters.
virtual const float *	getReferencePoint () const =0 Reference point of the track parameters.

virtual const TrackStateVec &	getTrackStates () const =0 Returns track states associtated to this track.
virtual const TrackState *	<pre>getClosestTrackState (float x, float y, float z) const =0 Returns track state closest to the given point.</pre>
virtual const TrackState *	getTrackState (int location) const =0 Returns track state for the given location - or NULL if not found.
virtual const TrackerHitVec &	$ \begin{array}{l} \textbf{getTrackerHits} \; () \; \text{const} \; = \! 0 \\ \textit{Optionaly} \; (\; \textit{check/set} \; \textit{flag(LCIO::TRBIT_HITS)} = \! 1) \; \textit{return the hits that have been used to create this track.} \end{array} $

Tracker-and CalorimeterHit

- canonical way of accessing layer number:
 - local to sub detector (inside-out, starting from 0)
 - getLayerNumber(), setLayerNumber()
 - filled from cellIDs after reading, write to cellID
 - need convention: string "layer" in CellIDEncoding
 - if "layer" not present layerNum = -1 (deal with this in Marlin/org.lcsim)
 - will update SLIC and Mokka accordingly
- add cellIDs to TrackerHit:
 - getCellIDO(), getCellID1() (-> same as in CalorimeterHit)
 - use cellID for consistency w/ CaloHit even though there are no cells
 - drop old 'type' word and replace getType() with access to cellID["type"]
- question: convention for subdetectorIDs in cellIDs?
 - -> this will probably have to be done on a per concept (detector) basis
 - -> need convention for ILD for DBD reconstruction

droped - layer needs to be accessed through cellID!

Done!

additional extensions

- to Cluster add
- float getEnergyError()

Done!

- float getTime() <- new request from ILD/CLIC to be done?
- to SimCalorimeterHit optionally add the position where the energy deposition (step) occurred:
- float[3] getStepPosition(int i)

v01-60 needed asap for DHCAL !!

- only if flag LCIO.CHBIT_STEP==1
 - useful for detailed simulation studies of edge effects in calorimeter cells or MAPS digitization

1d and 2d TrackerHits

- agreed to have two new TrackerHit classes :
- TrackerHitPlanar

Done!

- x, y, z 'space point'
- u(theta, phi) , v(theta, phi) measurement directions (spanning vectors in the plane)
- du, dv measurement errors
- -> to be used for 1d and 2d
- TrackerHitCylindrical
 - x, y, z 'space point'
 - R, Xc, Yc cylinder parameters (parallel to z)

- dphi, dz measurement errors
- -> to be used for 1d and 2d
- these also implement the TrackerHit interface (x,y,z, cov) for backward compatibility and code reusability
- some testing done within MarlinTrk and new digitizers:
 - so far no problems found