
LCIO 2.0
Status and open issues

Frank Gaede, DESY
Software Common Task Group

Meeting, Sep 8, 2011

Fr
an

k
G
ae

de
,
So

ft
w
ar

e
CT

G
 M

ee
ti
ng

,
Se

p
8,

 2
01

1

2

LCIO repository moved to SVN
http://java.freehep.org/svn/repos/lcio/list/

checkout released versions:
svn co svn://svn.freehep.org/lcio/tags/v01-60 v01-60
checkout HEAD version:
svn co svn://svn.freehep.org/lcio/trunk trunk

old CVS still works for checkout of released versions !

svn webinterface:

need to be announced
● manual
● web page Done !

Fr
an

k
G
ae

de
,
So

ft
w
ar

e
CT

G
 M

ee
ti
ng

,
Se

p
8,

 2
01

1

3

LCIO 2.0 - new features
LCIO 2.0 (AKNA LCIOv2) is planned for some time now

goal is to improve LCIO while still being backward compatible

planned/requested features:

direct access to events -> Done

partial reading of events -> postponed

splitting of events over fles -> postponed

storing of (arbitrary) user classes –> currently not planned

simplify using LCIO with ROOT -> Done
(ROOT macros, TTreeViewer, I/O (?) ,...)

improving the event data model -> Done
(1d,2d hits, tracks/trajectories)

Fr
an

k
G
ae

de
,
So

ft
w
ar

e
CT

G
 M

ee
ti
ng

,
Se

p
8,

 2
01

1

4

cleanup of build systems

C++

remove old Makefles – have CMake only

Java

remove old ant scripts

have Maven only

-> include Maven in release
no dependency for C++

-> Maven plugin for creating header fles only once
interesting for developers - (no rebuild after install)

Done !

Done !?

Fr
an

k
G
ae

de
,
So

ft
w
ar

e
CT

G
 M

ee
ti
ng

,
Se

p
8,

 2
01

1

5

extensions of MCParticle
add spin information:
foat[3] getSpin()

add color fow information
int[2] getColorFlow()
are these pointers to other MCParticles (indices) ?

-> both copied from stdhep/HepEvt4 as written by Whizzard

user request:
have simProcessId for particles that decayed in simulator
-> will use lower 16 bits of SimStatus word + collection parameters:
SimProcessID, SimProcessName
short getSimProcessID()
need to defne details of processIDs
implement this in Mokka and SLIC the same way

Done !

should be postponed to
next minor release !

Fr
an

k
G
ae

de
,
So

ft
w
ar

e
CT

G
 M

ee
ti
ng

,
Se

p
8,

 2
01

1

6

Track with multipleTrackStates
Track now has multiple
TrackStates
canonical TSs:
TrackState::AtIP, AtFirstHit,
AtLastHit, AtCalo, AtVertex,
AtOther

TS returned either by
identifer
or closest to given point

mostly backward compatible
(isReferencePointPCA dropped)

Done !

Fr
an

k
G
ae

de
,
So

ft
w
ar

e
CT

G
 M

ee
ti
ng

,
Se

p
8,

 2
01

1

7

Tracker-and CalorimeterHit

canonical way of accessing layer number:
local to sub detector (inside-out, starting from 0)
getLayerNumber(), setLayerNumber()
flled from cellIDs after reading, write to cellID

need convention: string “layer” in CellIDEncoding
if “layer” not present – layerNum = -1 (deal with this in Marlin/org.lcsim)
will update SLIC and Mokka accordingly

add cellIDs to TrackerHit:
getCellID0(), getCellID1() (-> same as in CalorimeterHit)
 use cellID for consistency w/ CaloHit – even though there are no cells
drop old 'type' word and replace getType() with access to cellID[“type”]

question: convention for subdetectorIDs in cellIDs ?
-> this will probably have to be done on a per concept (detector) basis
-> need convention for ILD for DBD reconstruction

droped – layer
needs to be accessed
through cellID !

Done !

Done !

Fr
an

k
G
ae

de
,
So

ft
w
ar

e
CT

G
 M

ee
ti
ng

,
Se

p
8,

 2
01

1

8

additional extensions

to Cluster add

foat getEnergyError()

foat getTime() <- new request from ILD/CLIC

to SimCalorimeterHit optionally add the position
where the energy deposition (step) occurred:

foat[3] getStepPosition(int i)
only if fag LCIO.CHBIT_STEP==1
useful for detailed simulation studies of edge effects in calorimeter
cells or MAPS digitization

to be done ?

needed asap for DHCAL !!

Done !

Done !
v01-60

Fr
an

k
G
ae

de
,
So

ft
w
ar

e
CT

G
 M

ee
ti
ng

,
Se

p
8,

 2
01

1

9

1d and 2d TrackerHits
agreed to have two new TrackerHit classes :
TrackerHitPlanar
x, y, z - 'space point'
u(theta, phi) , v(theta, phi) – measurement directions (spanning vectors
in the plane)
du, dv - measurement errors
-> to be used for 1d and 2d

TrackerHitCylindrical
x, y, z - 'space point'
R, Xc, Yc – cylinder parameters (parallel to z)
dphi, dz - measurement errors
-> to be used for 1d and 2d

these also implement the TrackerHit interface (x,y,z, cov) for backward
compatibility and code reusability
some testing done within MarlinTrk and new digitizers:

so far no problems found

Done !

Done !

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

