Understanding measurements with single glasses II

Matteo Mantoani

- The analysis of the scintillating glasses has the goal to separate cherenkov and scintillation effects on the basis of their different time distributions.
- These results can then be compared with a simulation.
- For now we are still dealing with cosmic muons

- Previous analysis used a gaussian shape for the cherenkov peak and an exponential shape for the scintillation part.
- Now a convolution between a gaussian shape and an exponential shape is used for the scintillation part
- A gaussian shape is still used for the Cherenkov peak
- These two contribution are summed.

- Our main goal is for the moment understanding how the photodetector response influences the overall pulse shape
- We are investigating the photodetector response using two methods:
- Firstly looking at single events coming from interaction between cosmic rays and glasses.
- Secondly simulating Cherenkov events using a picosecond infrared laser source.

Single event analysis

This is as a single event looks like: Graph 600</

 The number of photoelectrons is limited so that single photoelectrons ca be isolated. The photoelectrons in the circled area are well isolated

6

- Analyzing single peaks and obtained following fits shows the asymmetry.
- The fits are made only in the leading edge range
 Graph
 \$\frac{\frac{\frac{14.3}{20}}{\frac{14.3}{20}}}{\frac{14.3}{20}}\$

Using a Picosecond IR laser

- The laser used is a Picosecond IR Laser
- Laser pulse width is about 35 picoseconds in so that it simulates Cherenkov pulses
- The potons are injected in the glass and also are projected directly to the phototube

Directly to PMT

Through glass

Conclusions

- We have fitted the average pulse shapes from cosmic muons with a convolution of a gaussian with the sum of a deta function (for cerenkov) and an exponential (for scintillation).
- Cerenkov/scintillation contributions are about 0.4 as expected. The scintillator time constant is about 70 ns (as expected)
- We have then investigated the assumption of a Gaussian for the photodetector response using two methods
- In both methods we can see a RMS for the gaussian of the order of 1.5 ns.

Conclusions ctd.

- This is smaller than the width of the convolution gaussian obtained from the fit to the average pulse shapes of mip events (2.4 ns)
- This difference, as well as the deviations from the gaussian are more likely due to differences in photon path lengths rather than phototube contributions
- We plan to obtain an independent measurement of scintillation decay time by illuminating the glass with a U/V laser.