Study of the Higgs Selfcoupling at the ILC

Junping Tian Asian Physics and Software Meeting Sep. 2, 2011

status

last meeting

 drop of the cross section of ZHH and drop of the Br of Higgs decays into b-bbar

today

 strategy of extrapolating the efficiencies for different Higgs masses

 expectation of the cross section and self-coupling measurement

efficiency for higher Higgs mass

- assume the signal efficiency unchanged.
- shift the cuts for two Higgs invariant masses to estimate the efficiency drop of the Higgs mass sensitive backgrounds, such as ZZZ, ZZH, Ilbb.
- keep the t-tbar efficiency unchanged.

remained backgrounds (llHH)

full simulation @ 500GeV

Polarization: (e-,e+)=(-0.8,0.3) $\int Ldt = 2ab^{-1}$ M(H) = 120 GeV

	llHH	vvHH	qqHH (i)	qqHH (ii)
Signal	6.4	5.2	8.5	16.6
BG	6.7	7.0	11.7	129
ZZZ	1.2	0.6	2.1	6.7
ZZH	4.3	1.5	2.7	7.6
tt, ttqq	-	3.3	5.2	105
llbb, bbbb	1.2	1.6	1.3	9.1

extrapolate from this table

remained S & B for different Higgs masses

(with cross section drop and branching ration drop)

M(H)=125 GeV		llHH	vvHH	qqHH (i)	qqHH (ii)		
	Signal	4.5	3.6	6.0	11.6		
	BG	4.7	6.0	9.7	123		
M(H)=130 GeV	Signal	2.9	2.3	3.8	7.4		
100 Gev	BG	3.2	5.4	8.4	119		
M(H)-135 CeV	Signal	2.9	2.3	3.8	7.4		
WI(II)=100 Ge v	BG	5.6	4.5	7.1	113		
M(H) - 140 CeV	Signal	0.9	0.7	1.1	2.2		
WI(11)-140 Gev	BG	1.0	4.0	6.3	110		

combined significance

Polarization: (e-,e+)=(-0.8,0.3) $\int Ldt = 2ab^{-1}$

M(H) GeV	120	125	130	135	140
significance	3.9σ	3.4σ	2.2σ	1.4σ	1.0σ
	8.4σ	7.5σ	4.7σ	2.6 σ	1.9σ

results for the case we can double the signal efficiency with the future improvement

precision of the cross section

blue: for current analysis technologyred : double the signal efficiency

M(H) (GeV)	120	125	130	135	140
precision	32%	40%	53%	87%	138%
	18%	20%	29%	47%	69%

precision of the self-coupling

effects of irreducible Feynman diagrams

M(H) (GeV)	120	125	130	135	140
Factor	1.80	1.74	1.68	1.63	1.59
precision	57%	70%	89%	142%	219%
	32%	35%	49%	77%	110%

summary

- effects of higher Higgs masses are investigated
- based on previous strategy, self-coupling measurement would be challenge for the mass higher than 130 GeV, even if we can double the signal efficiency by future improved analysis tool. (other Higgs decay modes should be considered in that case)

backup

analysis with different Higgs masses

For 140 GeV Higgs, σ(ZHH-->Zbbbb) will be only 13% of that for 120 GeV we need more efficient selection and consider H--> WW* mode

Expected number of events of $e^++e^- \dots > ZHH \dots > Z + 4 b$ -jet $\int Ldt = 2ab^{-1}$

Ecm	P(e-,e+)	M(H)=120GeV (~42%)	M(H)=140GeV (~10%)	
500 GeV	(0.,0.)	127	17	
	(-0.8,+0.3)	180	24	
540 GeV	(0.,0.)	137	21	ch
	(-0.8,+0.3)	194	30	

we have to consider H ---> WW*, ~50% for 140 GeV

challenge!